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           Fig. 1. Three XEPAs in alpha testing during software development  

Abstract—In recent years artists have created an explosion of generative art and physical computing installations using the 
systems studied in complexity science, and leveraging open source technologies such as the Processing programming language 
and Arduino microcontroller hardware. By using genetic algorithms, reaction diffusion systems, cellular automita, artificial life, 
deterministic chaos, fractals, Lindenmayer systems, and more artists can generate a seemingly unending stream of visuals and 
sound. But while these systems offer incredible quantity and variation, they usually lack any self-critical function and simply stream 
forth without discrimination. This is most apparent in genetic or evolutionary systems where the fitness function is typically not 
automated and requires interactive selection by the human artist/operator.  
The next phase of development seems likely to be the study and implementation of computational aesthetic evaluation. Only when 
computer-based systems are both generative and self-critical will they be worthy of consideration as being truly creative.  
XEPA is the name of both the art project and individual intelligent sculptures that display animated colored light and produce music 
and sound. XEPA is an acronym for “XEPA Emerging Performance Artist.” Each XEPA “watches” the others (via data radio) and 
modifies its own aesthetic behavior to create a collaborative improvisational performance. In doing so each XEPA independently 
evaluates the aesthetics of the other sculptures, infers a theme or mood being attempted, and then modifies its own aesthetics to 
better reinforce that theme. Each performance is unique, and a wide variety of themes and moods can be explored. 
Index Terms—Art, generative art, emergence, computational aesthetic evaluation, complexity, installation, multi-processor systems

 

1 INTRODUCTION 
One important class of computer applications in the arts is the realm 
of digital hand-tools such as Adobe Photoshop™ or Corel Painter™. 
But as important as such software is, what many find more 
compelling are applications where the computer seems to directly 
create art in a hands-off manner. This kind of art is typically referred 
to as generative art.  

In this paper we will explore what generative art has offered to 
date, and how contemporary digital generative art falls short of 
instantiating truly creative computers. This provides the background 
for a discussion of the XEPA project currently in development and 

previewed at IEEE VIS 2013 in a pre-release form. Among other 
things XEPA provides a platform for experiments in computational 
aesthetic evaluation. Because of the highly interdisciplinary nature of 
this work we will have to freely shift between approaches and 
writing conventions used by scientists and engineers, and artists and 
humanists. 

2 GENERATIVE ART 
From the point of view of art theory generative art is not a subset of 
computer art. In a now decade old paper I offered what has come to 
be the most widely cited definition of generative art to date.  
 

Generative art refers to any art practice where the artist uses a 
system, such as a set of natural language rules, a computer 
program, a machine, or other procedural invention, which is set 
into motion with some degree of autonomy contributing to or 
resulting in a completed work of art. [1] 
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It’s worth noting that “procedural inventions” can include systems of 
chemistry, biology, smart materials, or other physical processes. The 
key element in generative art is the use of an external system to 
which the artist cedes partial or total subsequent control. In recent 
decades scientists from diverse fields have been working together to 
create a new multidisciplinary understanding of systems. Under the 
general rubric of complexity science various systems, and various 
kinds of systems, have been studied, compared, contrasted, and 
mathematically and computationally modeled. An abstract 
understanding of systems that spans the physical, biological, and 
social sciences is beginning to emerge. And it is these very systems 
that are being used as state-of-the-art generative systems by artists.   

2.1 Generative Art and Complexity Science 
Prior to the era of complexity science the most well known measure 
of complexity was found in information theory as defined by Claude 
Shannon in 1948. [2] In considering the complexity of an 
information channel Shannon equated complexity with a lack of 
redundancy. Therefore a maximally complex channel is one that 
transmits random data. Following this lead Max Bense applied the 
notion of information complexity to create a theory he called 
“generative aesthetics.” [3] 

With the advent of complexity science physicists Murray Gell-
Mann and Seth Lloyd observed that equating randomness with 
complexity conflicted with our everyday notions of what constitutes 
a complex system. For example, a crystal can be considered a simple 
system in that there is a high degree of order created by its atoms 
being arranged in a lattice. This results in a system that is easy to 
describe, and any one crystal is quite similar to another. But a highly 
disordered system such as a cubic foot of atmospheric gas emerges 
as a simple system as well. Even though each molecule is moving 
about randomly, at human scale each cubic foot of atmospheric gas 
is easy to describe and similar to the others. 

Things we think of as complex systems defy simple description 
and easy prediction. Many would agree that the most complex 
systems we encounter are other living things. And life requires a mix 
of order and disorder; order to maintain integrity and survival; and 
disorder to allow flexibility and adaptation.  

It was this kind of intuition that lead physicists Murray Gell-
Mann and Seth Lloyd to suggest the notion of effective complexity. 
As illustrated in figure 2 Shannon’s information complexity 
increases with disorder, but effective complexity peaks where there 
is a mix of order and disorder.  

 
 

Fig. 2. A comparison of Information complexity and effective 
complexity. 

Effective complexity introduces a paradigm where high degrees 
of order and disorder both create simple systems, and where complex 
systems exhibit a mixture of both. Given this we can classify various 

forms of generative art as simple-ordered, simple-disordered, and 
complex systems. Going beyond classification, however, is the 
discovery that the history of generative art roughly follows the 
history of our cultural embrace of these different system types.  

 
 

Fig. 3. Systems used in generative art organized by effective 
complexity 

The earliest known use of generative art dates back some 75,000 
years ago to some of the earliest design artifacts we have. [4] In 
every time and place for which we find artifacts there are examples 
of symmetry, tiling, and pattern in the creation of art.  Note that just 
because an artifact is created manually that doesn’t mean it isn’t 
generative. With patterns and tiling the moment to moment intuitive 
choices of the artist are no longer in play, and the art is fully 
determined by an autonomous, albeit simple, system. It’s probably 
no coincidence that simple highly ordered systems were generally 
the first systems integrated into early societies. 

It wasn’t until the 17th century with Fermat and Pascal that 
mathematical models for chance events were developed. Prior to that 
time randomness was associated with the irrational, and was even 
somewhat suspect as privation from the Logos and thus evil. The use 
of highly disordered systems, e.g. chance operations, typically yields 
artistic results little more complex than highly ordered art. One of the 
earliest documented uses of randomization in the arts is often 
attributed to Wolfgang Amadeus Mozart, but the actual inventor is 
probably lost to the ages. [5] Randomization in the arts came into its 
own primarily in the 20th century. Artists making use of chance 
methods included a young Ellsworth Kelly to create collages, 
William Burroughs to create shotgun paintings and cut-up novels, 
and perhaps most famously John Cage to enforce a Zen-like 
acceptance of all sounds. 

In the last decade or so generative art has experienced a boom in 
part thanks to art, music, and design oriented open source 
programming environments such as Processing, Pure Data, and 
Supercollider, as well as open source microcontroller platforms such 
as the Arduino. Moving up the effective complexity curve, systems 
used to create contemporary generative art include fractals for 
recursive self-similar patterns [6]; L-systems for the creation of both 
organic and abstract branching systems [7]; physical chaotic systems 
such as video feedback or coupled pendulums such as in the case of 
my own piece “Chaotic Conductor”; simulated reaction diffusion 
systems for the kind of pattern formation found in animal fur and on 
seashells [8, 9]; and perhaps most of all systems based on artificial 
life and evolutionary computing [10, 11] 



2.2 Evolutionary Art and the Fitness Bottleneck 
Artists exercise critical aesthetic judgment in all phases of their 
work. Aesthetic evaluation comes into play when studying other 
artists, while applying micro-decisions while creating a piece, in 
learning from a newly created piece prior to beginning the next 
piece, and so on. Aesthetic evaluation includes more than making 
simple good/bad decisions as to the quality of work. It comes into 
play when trying to categorize art as to genre or movement, as well 
as when trying to understand the content of the work.   

For the most part the generative art methods and examples noted 
above, and in fact throughout the practice, exercise no or very little 
aesthetic evaluation. While the ordered, disordered, and complex 
systems used in generative art can provide an apparently endless 
stream of forms, images, sounds, and so on, selection of results and 
direction of the systems are left to the human artist/operators.  

Many writers on creativity emphasize that novelty is a necessary 
but insufficient criteria for creativity. Creativity also carries with it 
the implication that the results are useful or otherwise of value. To 
fully qualify as creative artists computers will have to at least 
combine generative systems with computational aesthetic evaluation. 
[12] This is perhaps best illustrated in the case of evolutionary art 
systems. 

When genetic algorithms and other evolutionary approaches are 
applied to industrial applications a key element is the fitness 
function. For example, if designing electronic circuits a type of data 
structure serves as the genotype describing a set of components and 
connections.  The genotype is then expressed as a phenotype, i.e. a 
completed circuit. While this completed circuit could be physically 
constructed and evaluated, more typically the phenotype is an 
accurate model used with circuit simulation software. The 
phenotype, i.e. the circuit, is the tested with a span of inputs and the 
resulting outputs measured.  

The way the genetic system makes progress is by making random 
changes to genotypes selected from the gene pool, discarding those 
new genotypes that do not constitute an improvement, and further 
breeding genotypes that do. Improvement here is relative to a fitness 
function that captures the aspects of the designed to be optimized. 
This is typically a weighted sum of scores. In this case the scores 
would represent properties such as parts count, ease of construction, 
price of components, conformity to input/output specifications, 
power consumption, and so on. By adjusting weights the designer 
can steer the evolution towards inexpensive circuits, or high 
precision circuits, or low power circuits, and so on as desired. 

Because the evolutionary process is completely automated 
optimal solutions can be rapidly approximated by allowing gene 
pools with many dozens of competitors evolving for hundreds of 
generations. 

The difficulty for generative artists using evolutionary systems is 
that we don’t know how to create general robust aesthetic fitness 
functions. While there have been narrow automated attempts, the 
typical solution involves putting the artist in the loop and manually 
scoring each new phenotype. This means the system is no longer 
entirely automated. This places a severe upper limit on both the size 
of the gene pool and the number of generations that can be run. This 
has been referred to as the fitness bottleneck. [13] 

Along with the fitness bottleneck evolutionary art faces a number 
of other technical and art theoretical problems. [14] More generally it 
is safe to say that most other examples of generative art entirely 
ignore the computational aesthetic evaluation problem. The XEPA 
project, in part, provides a platform for experiments in computational 
aesthetic evaluation and, perhaps, the eventual invention of truly 
artistically creative systems.  

3 COMPUTATIONAL AESTHETIC EVALUATION 
While it is true that computational aesthetic evaluation remains a 
fundamentally unsolved problem, it is not for lack of trying. Before 
describing the XEPA project what follows is a quick review of 

attempts to model aesthetics. A more detailed account is available in 
a chapter recently published as well as other sources. [15] 

3.1 Simple Formulaic Approaches 
There have been attempts to measure or define aesthetics in terms of 
relatively simple formulas, but all have been found to be inadequate 
and problematic. Perhaps most well known was the mathematician 
George David Birkhoff’s aesthetic measure. He proposed the 
formula M=C/O where M is the measure of aesthetic effectiveness, 
O is the degree of order, and C is the degree of complexity. While 
the way he operationalized this formula was fraught with difficulties 
and almost immediately disproved in empirical studies, he was one 
of the first to identify complexity and order relationships as being 
key. He was also among the first to claim such a formula would have 
to be rooted in neurology. [16] 

The Golden Ratio φ, an irrational constant approximately equal 
to 1.618, and the related Fibonacci series have been said to generate 
proportions of optimal aesthetic value. It has been claimed they are 
embedded in great works of art, architecture, and music. This has 
been contested and arguably debunked by writers such as Livio in 
examples such as the Great Pyramids, the Parthenon, the Mona Lisa, 
compositions by Mozart, and Mondrian’s late paintings. [17] 

On somewhat firmer ground is a principle commonly referred to 
as Zipf’s law. Given a large body of text, when each word is tallied 
and then listed in frequency order, for a word of given rank i its 
frequency relative to the first word will approximately be the 
reciprocal 1/i. This is related to 1/f power laws that can be observed 
in statistical distributions as varied as notes in melodies, colors in 
images, city sizes, incomes, earthquake magnitudes, and more. 
However, even though this kind of distribution is somewhat 
common, it’s at most a suggestive partial test for use in aesthetic 
evaluation. [18, 19] 

3.2 Complexity Measures 
Noted earlier was Bense and his notion of information theory-based 
generative aesthetics. Despite being called “generative” his theory 
was more descriptive than normative. As applied by his colleague 
Moles information complexity provided a way of specifying a multi-
dimensional media space, but offered little guidance as to how to 
discriminate between aesthetic objects of high and low quality. [20] 

Somewhat more successful has been Machado and Cardoso’s 
adaptation of Birkhoff’s aesthetic measure in their NEvAr system. 
[21] That system generates images using an approach first introduced 
by Sims called evolving expressions. [22] It uses three mathematical 
expressions to calculate pixel values for the red, blue, and green 
image channels. The set of math expressions operates as a genotype 
that can reproduce with mutation and crossover operations. 

Similar to Birkhoff, Machado and Cardoso evaluate the aesthetics 
of these images as a ratio of image complexity and perceptual 
complexity. To implement this as an automatic fitness function the 
degree to which an image resists jpeg compression is considered 
image complexity, and the degree to which it resists fractal 
compression is considered perceptual complexity. They reported 
surprisingly good imaging results but to date there is no particular 
evidence that this approach generalizes to other kinds of images. 

3.3 Psychological and Neurological Models 
A number of generative artists have observed that success in the 
realm of computational aesthetic evaluation is unlikely until 
psychological and neurological research suggests models of how 
aesthetics in humans works. While research in this area is increasing, 
most notably with the establishment of neuroaesthetics as a subfield 
and related brain imaging studies, there are as of yet no robust 
models let alone software implementations. Offered here is a brief 
look at three foundational researchers in the psychology of 
aesthetics. 

Rudolf Arnheim applied the principles of gestalt psychology to 
aesthetic perception, and in doing so established the notion of 



 
aesthetic perception as cognition. Many see this as suggesting that 
aesthetic perception can be modelled computationally. The law of 
pragnanz in gestalt states that the process of perceptual cognition 
endeavours to order experience into wholes that maximise clarity of 
structure. From this law come the notions of closure, proximity, 
containment, grouping, and so on now taught as design principles. 
Unfortunately Arnheim’s theory of aesthetics is much more 
descriptive than normative, and direct application to computational 
aesthetic evaluation is not obvious. [23] 

Daniel E. Berlyne’s most significant contribution to the 
psychology of aesthetics is the concept of arousal potential and its 
relationship to hedonic response. Arousal potential is a property of 
stimulus patterns and a measure of the capability of that stimulus to 
arouse the nervous system. Berlyne explicitly notes the 
correspondence between arousal potential effects and concepts from 
Shannon’s information theory. He proposes that hedonic response is 
the result of separate and distinct reward and aversion systems. The 
reward and aversion systems activate in proportion to the number of 
neurons stimulated, and the number of neurons responding will 
increase as a Gaussian cumulative distribution. Berlyne further 
proposes that the reward system requires less arousal potential 
exposure to activate, but that when activated the aversion system will 
produce a larger response. This is illustrated in figure 4. [24].  

-

 
 

Fig. 4. Arousal potential as the summation of two Gaussian cumulative 
distributions  

Berlyne notes that in the general neurological case this function is 
usually called the Wundt curve. In Wundt’s model the x-axis 
represents low-level neural intensity. Berlyne’s arousal potential on 
the x-axis includes psychophysical intensity, ecological stimuli, and 
most importantly collative effects. Increasing collative effects such 
as novelty and surprise represent increasing complexity in the 
information theory sense. From this point of view works of only 
moderate information complexity maximise the hedonic response. 

This is consistent with the artistic notion that audiences respond best 
to works that are not so ordered as to be boring, and not so 
disordered so as to be chaotic. An alternate interpretation would be 
that this response echoes effective complexity, and that high 
effective complexity in turn has, in a sense, the balance of order and 
disorder “built in.” If our most important and challenging survival 
experiences have to do with other living things, perhaps that created 
evolutionary pressure leading to the optimisation of the human 
nervous system for effective complexity. And perhaps human 
aesthetics reflects that optimisation.  

Colin Martindale developed a (natural) neural network model of 
aesthetic perception dynamics he referred to as prototypicality. He 
found that prototypicality did a better job of explaining a series of 
experimental observations than Berlyne’s arousal potential. 
Martindale suggests that neurons form nodes that accept, process, 
and pass on stimulation from lower to higher levels of cognition. 
Low level processing tends to be ignored, and high level semantic 
nodes encoding for meaning have the greatest strength in 
determining preference. [25, 26] 

Nodes are described as specialised recognition units connected in 
an excitatory manner to nodes corresponding to superordinate 
categories. Nodes at the same level, however, will have a lateral 
inhibitory effect. The result is that nodes encoding for similar stimuli 
will be physically closer together than unrelated nodes thus creating 
semantic fields. As a result the overall nervous system is optimally 
activated when presented an unambiguous stimulus that matches a 
prototypically specific and strong path up the neural hierarchy. 
Preference is then determined by the extent to which a particular 
stimulus is typical of its class. The obvious suggestion is that 
computational aesthetic evaluation is a strong candidate for an 
artificial neural networks approach. However, the fact that the human 
brain includes approximately 1015 neural connections should give us 
pause as to how daunting a project that might turn out to be.  

 

4 XEPA 
XEPA is an art project that, among other things, introduces a 
platform for experiments in computational aesthetic evaluation. It 
should be kept in mind, however, that the project is fundamentally 
artistic in motivation, and no pretense of controlled scientific 
research is implied. There is, however, an engineering aspect to the 
work. 

At the time this paper was written XEPA had just reached an 
alpha-stage of development. The hardware design and software 
possibilities are versatile enough that a number of approaches will be 
possible in the future, and those described here are just a beginning. 

 XEPA as a project is intended to be reconfigurable and suitable 
for a number of different settings. XEPA is the name of the project, 
but an individual device is also referred to as a XEPA. XEPA is a 
recursive acronym with an intentional double meaning as “the XEPA 
Emerging Performance Artist.” 

Each XEPA is a light sculpture that can display animated colored 
light sequences as well as high fidelity sound/music. In addition each 
XEPA “watches” and “listens” to the other XEPAs, and then 
attempts to change its own performance so as to fit in better and 
improve the aesthetics of the group performance. Each performance 
lasts a minute or two, and each performance is a unique 
improvisation different than the rest.  

4.1 XEPA hardware design 
As light sculptures each XEPA is constructed with four to eight one 
meter tubes. XEPAs can be wall mounted, free standing, or 
suspended sculptures. Different installations may have differing 
numbers of XEPAs of different designs. For example, in one 
installation the XEPAs may all be the same and all mounted on a 
single wall. In another installation XEPAs of various design may 
hang from the ceiling. 



Each light sculpture tube is a milky white diffuser with 16 RGB 
LED lighting units inside acting as 16 pixels. Each pixel is 
individually addressable as a 24-bit color using the lighting industry 
DMX control protocol. 

Sound is produced using a single studio quality monitor with 
built-in amplification. A typical speaker of this kind is the Genelec 
1029A. Because a given XEPA acts as a performer or instrumentalist 
rather than an ensemble, a single speaker rather than a stereo pair is 
appropriate. Various XEPAs will produce sound simultaneously and 
mix in the air not unlike a band using acoustic instruments. 

Each XEPA uses three inexpensive processors. An Arduino Mega 
2560 is used for high-level observation and decision making. The 
Mega 2560 is an open source hardware platform using an 
ATmega2560 microcontroller chip with 256 KB of flash memory for 
code, 8 KB of SRAM for variable memory, and 4 KB of EEPROM 
for non-volatile storage not requiring frequent updates. The Mega 
2560 has 4 UARTS that assist with serial communications, and built-
in hardware support for SPI. (The Mega 2560 has other features not 
used by XEPA and so not described here.) 

An Arduino Leonardo is used for real-time DMX 
communications used to control the LED tube animation. Also an 
open source hardware platform, the Leonardo uses an ATmega32u4 
microcontroller chip with 32 KB of flash memory for code, 2.5 KB 
of SRAM for variable memory, and 1 KB of EEPROM for non-
volatile storage not requiring frequent updates. The Leonardo has 1 
UART for serial communications, and unlike other low end 
Arduinos, separate support for USB communications used to upload 
code while programming. (Other Leonardo features not used by 
XEPA are not described here.) 

The third processor is an open source hardware single-board 
computer produced by Texas Instruments called the BeagleBoard. 
The BeagleBoard-xM used by each XEPA uses a TI DM3730 
Processor running at 1 GHz with an ARM Cortex-A8 core. The 
BeagleBoard has 512 MB of RAM for both code and data, and boots 
from a 4 GB microSD memory card. The BeagleBoard is designed to 
be a complete single board computer and includes DVI-D video 
output, USB interfaces, and so on. However, XEPA uses the 
BeagleBoard as a sound engine for real-time high fidelity music 
synthesis, and only requires the built-in audio output hardware, and a 
USB port for serial-over-USB data communications. 

All three boards are mounted on laser-cut clear sheet acrylic 
enclosures that can either stand freely or be wall mounted. The 
enclosures are open and clear to present the “XEPA Brain” as a 
deconstructed demystified element. This is illustrated in figure 5.  

 
 

Fig. 5. XEPA “Brain” with front acrylic panel removed and without 
processor boards interconnected 

Figure 6 gives some details as to how the three processor boards 
work together. The Mega 2560 has an extra “shield” board for artist-
designed circuitry. It provides an XBee data radio to broadcast very 
short messages announcing what the XEPA is doing, and picks up 
broadcast messages from other XEPAs to “view” and “hear” what 
they are doing. The XBee data is transparently presented to the 

Arduino software as serial data. There is also an 8-bit DIP switch 
that can be used to assign the XEPA a unique ID number, or to set 
various debug modes. The shield also provides a small line driver 
circuit used to convert the +5 volt data from the Leonardo to the 
balanced signal required by DMX. Not shown is a microSD memory 
card reader that can be used in the future for additional storage of 
large look-up tables and such. 

-

 
 

Fig. 6. XEPA “Brain” interconnection design. 

As previously noted the Mega 2560 takes care of all higher level 
functionality including “watching” other XEPAs, executing aesthetic 
evaluation, and deciding what light animation and sound phrases will 
be performed. At regular intervals related to the rhythm and tempo of 
the performance the Mega 2560 sends short commands to the 
Leonardo and BeagleBoard. The Leonardo reacts to each message by 
executing an animation sequence, and the BeagleBoard reacts to 
each message by generating a sound phrase in real-time. 

4.2 XEPA software infrastructure 
XEPAs create a performance by executing animation and sound 
phrases. At the beginning of each phrase the given XEPA sends out a 
short data radio packet that merely describes what the XEPA will do 
in the phrase about to begin. In principle it is as if each XEPA is 
watching all the others. There are no data radio “commands” telling 
each XEPA what to do. Each XEPA decides for itself which of the 
other XEPAs to synchronize with, and which of the other XEPAs 
should influence its performance. 

The two Arduino-based processor boards, the Leonardo and 
Mega 2560, use the standard open source Arduino IDE along with 
libraries for DMX and serial communications. The BeagleBoard uses 
the open source Supercollider music synthesis language for audio 
processing running on a Linux variant configured as part of the 
Satellite CCRMA project at Stanford University.  

4.3 Lessons from improvisation 
The XEPA algorithms used to date have been heavily influenced by 
lessons learned from my personal experience as an improvisational 
musician and performance artist, as well as additional lessons noted 
in part in the previous sections on generative art and aesthetic 
evaluation. 

One lesson is that our perceptual cognition will meet an 
improvised performance more than half way. As Arnheim discovered 
our gestalt mechanisms will “fill in” and otherwise structure our 
perception to maximize clarity in experience. Improvised 
performance doesn’t have to be perfect to be effective, and in fact 
there is never a single correct performance choice. Each individual’s 
performance can only be judged in the context of the choices of all 
the other performers, and more often than not there will be several 
equally valid choices. 

Another lesson is that the audience wants to be surprised, but the 
audience doesn’t want to be left behind by a performance too 
unpredictable to follow. This is not unlike Berlyne’s concept of 
arousal potential, or for that matter the notion of effective 



 
complexity, where beauty or aesthetically pleasing complexity will 
exhibit a mix of mild and strong stimulation, and a mix of order and 
disorder. 

A third, and perhaps most important, lesson is that micro-
aesthetic decisions by themselves don’t matter nearly as much as the 
contribution they make to a clear high-level semantic impression. 
One of the wonderful mysteries of music is how purely abstract 
assemblages of sound can not only convey an emotion such as anger, 
they can communicate specific emotions such as the epic anger of 
war versus the comic anger of slapstick. This is similar to 
Martindale’s notion of prototypicality where low-level sensations 
result in successful aesthetics when they resonate with a unified 
abstraction at a high level of cognition.  

4.4 Initial implementation 
XEPA is initially designed to execute effective improvisations that 
never repeat through the explicit programming of aesthetic 
possibilities. XEPA is not, at this time, intended to be a system that 
learns aesthetics other than being “taught” by tables of aesthetic 
correspondences provided by the artist. In other words the current 
project is to build a system that can gainfully use what it has learned. 
It’s entirely possible that future work can integrate machine learning.  

An information aesthetics analysis of a XEPA as per Moles 
would reveal a very large multi-dimensional media space. The visual 
component can include a large number of color palettes, animation 
sequences, tempos, rhythms, fades, flashes, pulses, and so on in all 
possible combinations. To this one would have to add the sound 
component including the harmonies, scales, finite but large melodies 
of fixed length, timbres, and so on also in all possible combinations. 
Finally the cross product of the audible and visual possibilities 
further exponentiates the media space. The notion of creating multi-
dimensional tables and manually scoring each possible combination 
is not practical, and other methods of computational aesthetic 
evaluation remain to be invented. 

To gain leverage over this combinatorial explosion a hierarchical 
model inspired by Martindale is used. First, a set of high level 
semantic fields are invented called themes. Each theme is a 
suggestive phrase such as “artic zone” or “house on fire” or “spring 
life.” For each of these each color palette, scale, animation sequence, 
and so on is given a weight based on artistic intuition. For example, a 
palette of blues and whites would be given a large weight for the 
theme “artic zone”, while a palette of reds and yellows would be 
given a low weight for that particular theme. While this is a 
combinatorial burden, it’s not at all impossible for twenty or so 
themes.  

Because the XEPAs begin in random states and explore a 
complex media space, having only 20 themes does not at all mean 
that there will only be 20 kinds of performances. The current state of 
a XEPA acts as a genotype. The tables create the basis for a kind of 
fuzzy logic for theme membership given a genotype. And it is theme 
membership, i.e. conformance to Martindale’s prototypicality, that 
acts as a fitness function. 

In performance each XEPA independently executes table-driven 
computational aesthetic evaluation of the other XEPAs, and then 
adapts its own performance. 

 
• Whenever a new packet is received from another XEPA 

a. Time-stamp the packet for possible later 
synchronization 

b. Compare the packet (genotype) to the weights for each 
theme generating an error score (fitness score) for each 

• At the end of a phrase compare your error score to the error scores of 
the other XEPAs  

a. If there are lower error scores use a Monte Carlo 
technique to select the genotype of another XEPA 

b. Apply crossover to the current genotype using the 
selected genotype 

c. Synchronize with the selected XEPA 

XEPAs initialized in random states will execute this quasi-
evolutionary system in a loosely coupled manner. Over time the 
performing XEPAs will converge on a coherent theme. Heuristics 
are used to prevent duplications in the genotype exercised by each 
XEPA to guarantee variety among the players. 

5 CONCLUSION 
Generative art has been described as a systems-based art practice. It 
is notable that ideas from complexity science have impacted 
generative art providing a context for understanding simple ordered, 
simple disordered, and complex systems. In addition those systems 
have been exploited by generative artists in their relative historical 
order. 

What generative art currently lacks, and what is required to create 
truly creative computers, is a mastery of computational aesthetic 
evaluation. In particular aesthetic models from perceptual 
psychology and neuroaesthetics are greatly needed. 

XEPA has been created as both an artwork and a platform for 
experiments in computational aesthetic evaluation. The initial XEPA 
software creates a quasi-evolutionary system that seeks convergence 
on a theme in a way reminiscent of Martindale’s prototypicality. 
Future development may replace manually developed intuitive 
weights with forms of machine learning or new computational 
aesthetic evaluation algorithms. 
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