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Who Am I ?

 Philip Galanter (http://philipgalanter.com)
 Dept. of Visualization, Texas A&M University
 Coding since the early 70’s + Electronic Music
 BA in philosophy, MFA School of Visual Arts
 Teach grad studios in generative art & PComp
 Make generative, sound, installation art
 Art theory, complexity science, related curation



Genesis of This Course

Seminar retreat In September 2009 at the Schloss Dagstuhl
Computational Creativity: an interdisciplinary approach
Leibniz-Zentrum fuer Informatik, Germany
(Margaret Boden, Mark D'Inverno, and Jon McCormack)
 
Galanter, P. (2012 (in press)). Computational Aesthetic 
Evaluation: Past and Future. In J. McCormack & M. 
d'Inverno (Eds.), Computers and Creativity. (39 pages). 
Berlin: Springer.

papers from the seminar are available online at 
http://drops.dagstuhl.de/opus/portals/index.php?semnr=09291



Ground Rules

 Broad survey of paths already taken, and 
trailheads worth future exploration.

 Modest depth
 Please hold your questions until the end.
 I’ll be happy to stay after the course.
 Everything shown is also in the course notes.
 Also additional info such as citations.

Any one of these topics could branch off into a discussion that would fill 
the session



Computational Aesthetic Evaluation?

Computer systems capable of making 
normative judgments related to questions of 
beauty and taste in the arts



Computational Aesthetic Evaluation?

 Type 1 - simulate, predict, or cater 
to human notions of beauty and 
taste.

 Type 2 - meta-aesthetic exploration 
of all possible emergent machine 
aesthetics in a way disconnected 
from human experience.

If beauty is in the eye of the beholder, what happens when the beholder is a 
computer?



Computational Aesthetic Evaluation?

This is not about aesthetics in the sense of 
a broader critical contemplation regarding 
art, nature, and culture. 

For the most part this is also not about 
higher order semantic content or meaning 
in art.



Computational Creativity?

Artistic creativity combines a generative impulse 
with a self-critical capacity that steers the overall 
process to a productive and satisfying end.

What will it take to create computers that can said to be truly creative?
Why is CAE critical to computational creativity?



Computational Creativity?

In computer art we have any number of generative systems:

 L-systems
 cellular automata
 reaction-diffusion systems  
 genetic algorithms 
 artificial life
 diffusion limited 

aggregation

 randomization
 simulated chaos
 combinatorial construction
 data mapping
 tiling and symmetry
 fractals



Computational Creativity?

 when they exercise evaluation as they 
experience the work of other artists. 

 as they execute countless micro-evaluations 
and aesthetic decisions for works-in-progress. 

 as they evaluate the final product, gaining new 
insights for the making of the next piece.

But we have essentially no computer methods of 
applying critical evaluation as artists do



Computational Creativity?

 It’s an almost entirely 
unsolved problem.

 How can we build digital 
systems that evaluate 
art, design, music, etc. 
with results consistent 
with human notions of 
beauty?



Computational Creativity?

 It’s also an exploration of 
meta-aesthetics.  How 
do aesthetic responses 
to stimuli develop in 
other creatures and 
systems? 



CAE is really hard!

 Individual aesthetic responses likely form based on:
– Genetic predisposition
– Cultural assimilation
– Individual specific experience and learning 



CAE is really hard!

 It evokes deep questions regarding:
– Philosophy
– Art theory
– Artificial intelligence
– Computability and computational complexity
– Psychology, neurology, sociology
– and more...

We WON’T be going into questions such as:
Would such a machine actually experience a sense of redness, brightness or 
other qualia? 
How would we know? 
Can machine evaluation be successful without such experience? 
If a machine isn’t conscious does that mean human aesthetic judgement and 
computational aesthetic evaluation can never converge? 
But isn’t the brain is itself a machine?
But even if it is, is human embodiment a requirement for human aesthetic 
evaluation?



CAE is really hard!

The Bad News

This course will not be a “how to” course.



CAE is really hard!

The Good News

If you’ve ever dreamed of making 
fundamental discoveries and having your 
articles cited for decades to come...

Here is your opportunity!



Course Outline

 Formulaic, Geometric, and Design Aesthetic 
Theories
–Birkhoff and the Aesthetic Measure
–The Golden Ratio
–Zipf’s Law
–Fractal Dimension
–Gestalt Principles
–The Rule of Thirds

Remember this is an introductory level course.  It’s a broad survey to get 
folks started.



Course Outline

 Artificial Neural Networks And Connectionist Models
  Evolutionary Systems

– Overview Of Generic Operation
– Interactive Evolutionary Computation
– Automated Fitness Functions

– Performance Goals Where Form Follows Function
– Error Relative To Exemplars
– Complexity Measures
–  Multi-objective Fitness Functions And Pareto 

Optimization
The role of computational aesthetic evaluation has a special place in 
evolutionary art.



Course Outline

 Biologically Inspired Emergent Fitness Functions
– Coevolution
– Curious Agents
– Niche Construction By Agents
– Agent Swarm Behavior

  Complexity Based Models Of Aesthetics
– Information And Computational Complexity
– Effective Complexity



Course Outline

  The Origins Of Art And The Art Instinct
  Psychological Models Of Human Aesthetics

– Arnheim – Gestalt And Aesthetics
– Berlyne – Arousal Potential And Preferences
– Martindale – Prototypicality And Neural Networks



Course Outline

 Findings In Empirical Studies
– Empirical Studies Of Viewers
– Empirical Studies Of Artists
– Empirical Studies Of Objects

 Neuroaesthetics
 Conclusion
 Q&A



A Brief History of CAE
Formulas, Biological Inspiration, and Complexity



Formulaic and Geometric Aesthetic Theories



Birkhoff’s Aesthetic Measure

M = O / C 

where:

M = aesthetic effectiveness
O = degree of order
C = degree of complexity

George Birkhoff notes he is only addressing formal issues and not connotative (i.e. symbolic) 
meaning.  Also the measure is only valid within a group of similar works.

Birkhoff begins with an explicit psychoneurological hypothesis. He describes complexity (C) as the 
degree to which unconscious psychological and physiological effort must be made in perceiving 
the object. Order (O) is the degree of unconscious tension released as the perception is realized. 
This release mostly comes from the consonance of perceived features such as “repetition, 
similarity, contrast, equality, symmetry, balance, and sequence.”

Birkhoff notes, “The well known aesthetic demand for ‘unity in variety’ is evidently closely 
connected with this formula.” 

Birkhoff, G. D. (1933). Aesthetic measure. Cambridge, Mass.,: Harvard University Press.



Birkhoff’s Aesthetic Measure

           M = O / C 
C = number of extended lines
O = V + E + R + HV - F
V = vertical symmetry
E = equilibrium
R = rotational symmetry
HV = relation to horizontal/vertical network
F = unsatisfactory form

Ultimately his formula relies on subjective judgements and “cheats” such as 
his “F” factor.

And empirical studies almost immediately called his work into question.



Birkhoff’s Aesthetic Measure

BIRKHOFF'S AESTHETIC MEASURE 393
Davis's failure to regulate in any way the connotanve associations and offer the
fairest possible opportunity tor Birkhoff's hypothesis to receive empirical support.

A third difference from previous studies was the method of presentation.
The stimuli, copied directly from Birkhoff's plate, in black rather than blue,
were placed two on a card in a manner agreeable to the best requirements of
the paired comparison method Matters of position, temporal contiguity, repeti-
tiveness and so on were carefully controlled These figures were projected
on a screen by means of a reflectoscope for approximately 10 seconds each
Accordingly, the position of the figures—not controlled by Davis, though
demanded by Birkhoff—was in our investigation rendered vertical and constant.

Ninety-five undergraduate students in psychology, unfamiliar with the purposes
of the experiment, acted as subjects. Each subject was provided with a blank
containing at the top the following instructions:

Male . Female . Training in art, other than regular
school curriculum Yes . . No

This experiment consists of a series of judgments between vanous visual stimuli
presented two at a time Judge which one of each pair you believe to be preferable
from the point of view of aesthetic beauty and record your preference opposite the
appropriate number Be sure to vote for one or the other, if thert seems little choice
vote for one and add a question mark in the column provided

Try to assume a passive attitude and record your very first impression Do not stop
to analyse the stimuli. Avoid as much as possible associations or meanings that grow
out of past experience The question before you is, " Which of the two figures seems
more aesthetically beautiful3 "
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FIG 2 GRAPHIC REPRESENTATION OF ORDER OF STIMULI ACCORDING TO BIRKHOFF'S
MEASURE "M," AND THAT OF SCALE VALUES OBTAINED FROM CLASS

OF 95 SUBJECTS BY METHOD OF PAIRED COMPARISONS
Note that Birkhoff's values have been corrected by eliminating all minus values

and setting the lowest one at zero

Douglas Wilson (1939)

“The results of this 
investigation do not support 
the hypothesis of Birkhoff that 
his a priori measure is a true 
measure of aesthetic value as 
far as polygons and 
geometrical figures are 
concerned.”

n = 95 student subjects responding to paired tests

Only order matters.  Correlation measure  Series A = .44  and Series B = .
38

Wilson, D. J. (1939). An experimental investigation of Birkhoff's aesthetic 
measure. The Journal of Abnormal and Social Psychology, 34(3), 390-394.



Birkhoff’s Aesthetic Measure

M = O / C 

where:

M = aesthetic effectiveness
O = degree of order
C = degree of complexity

Many have noted that Birkoff ’s is more a measure of orderliness than 
beauty.
But he made two lasting contributions:
He suggests that complexity and order relationships are key.
He suggests an underlying neurological basis for aesthetics.



Number Sequences

 Pythagoras - strings in 
simple integer ratios 
( 1:2, 2:3, 3:4, etc.) 
create harmonic tones.

 Fibonacci sequences 
seem to appear in 
nature such as spiral 
patterns in plants. 
( 1, 1, 2, 3, 5, 8, 13, ...)



1 +
p

5

2

The Golden Ratio

Related to the Fibonacci series, the 
Golden Ratio is also uniquely related to 
its own reciprocal.  This results in a 
rectangular shape that reappears when a 
square is cut off.

φ =  1 + (1/φ) =                  =  1.618...



The Golden Ratio

Psychologist Gustav Fechner is credited with 
conducting the first empirical studies of human 
aesthetic response in the 1860s. His 
experiments seemed to show that golden 
rectangles had the greatest appeal relative to 
other aspect ratios. But subsequent studies have 
cast strong doubt on those results.

Holger, H. (1997). Why a special issue on the golden section hypothesis?: An 
introduction. Empirical Studies of the Arts, 15.



The Golden Ratio

 the Great Pyramids
 Leonardo da Vinci
 the Mona Lisa

 Mozart
 Mondrian
 Seurat

Some have “discovered” the use of the Golden 
Ratio throughout history, but Livio (2003) has 
credibly debunked supposed Golden Ratio use in 
works and by artists including:

Livio, M. (2003). The golden ratio : the story of phi, the world's most astonishing 
number (1st trade pbk. ed.). New York: Broadway Books.



The Golden Ratio

However, based on legend the 
Golden Ratio has been 
intentionally used by later 
artists. It has become a 
“self-fulfilling proportionality.”

For example Le Corbusier 
based his modular, a tool for 
design, on the Golden Ratio. 



Pi
1

ia

Zipf’s Law

 Tally every word counting each occurrence.
 List each word from the most to least frequent.
 The frequency P for a given word with rank i is:

Describes the relative frequency of types in large 
collections. For example, given a large text:

≈

where the exponent a is near 1.

So relative to the most frequent word, the second most frequent word will 
occur 1/2 as often, the third most frequent word 1/3 as often, and so 
on...



Zipf’s Law

Manaris et al. (2005, 2003) note that this power law 
relationship has not only been verified in various bodies of 
musical composition, but also: 

“colors in images, city sizes, incomes, music, earthquake 
magnitudes, thickness of sediment depositions, extinctions of 
species, traffic jams, and visits of websites, among others.”

Manaris, B., Vaughan, D., Wagner, C., Romero, J., & Davis, R. B. (2003). 
Evolutionary music and the Zipf-Mandelbrot law: Developing fitness 
functions for pleasant music. Applications of Evolutionary Computing, 2611, 
522-534.

Manaris, B., Machado, P., McCauley, C., Romero, J., & Krehbiel, D. (2005). 
Developing fitness functions for pleasant music: Zipf's law and interactive 
evolution systems. Applications of Evolutionary Computing, Proceedings, 
3449, 498-507.



Zipf’s Law

 Manaris et al. (2003) classify specific musical 
compositions as to composer, style, and an aesthetic 
sense of “pleasantness.”

 Machado et al. (2007) have used Zipf’s law in the 
creation of artificial art critics.

 Much earlier (1975) Voss and Clarke suggested 
using 1/ f distributions in generative music.

Application in CAE has included:

Machado, P., Romero, J., Santos, A., Cardoso, A., & Pazos, A. (2007). On the 
development of evolutionary artificial artists. [doi: DOI: 10.1016/j.cag.
2007.08.010]. Computers & Graphics, 31(6), 818-826.

Voss, R. F., & Clarke, J. (1975). 1-F-Noise in Music and Speech. [Article]. 
Nature, 258(5533), 317-318.



Fractal Dimension

 Fractals are geometric objects that exhibit self-
similarity at all scales.

 The fractal dimension measures the ability of the 
fractal to fill the space it is in.

 An object with a fractal dimension of 1 has the 
space filling capacity of a line.

 An object with a fractal dimension of 2 can fill the 
planar space it is in.

Fractals have fractional dimensions.  For example a fractal with a dimension 
of 1.3 would only partially fill the plane it is in.

Peitgen, H.-O., Jürgens, H., & Saupe, D. (1992). Chaos and fractals : new 
frontiers of science. New York: Springer-Verlag.



Fractal Dimension

Studies by Taylor (2006) have shown that late period 
“drip” paintings by Jackson Pollock are fractal-like. 

Taylor, R. P. (2006). Chaos, Fractals, Nature: a new look at Jackson Pollock. 
Eugene, USA: Fractals Research.



Fractal Dimension
Measured empirically the fractal dimension of his paintings 
increases over time from 1.12 in 1945 to 1.72 in 1952.

The box counting method used to empirically measure the fractal dimension 
of Pollock paintings.

If we assume that Pollock’s technique improved over time we can say that 
when it comes to this body of work fractal dimension is a possible 
measure for computational aesthetic evaluation.

This might also (or just) be a case of the peak shift phenomenon. 



Design Principles as Informal Formulas



Unity in Variety

The old definition of beauty in the Roman school of 
painting was  il più nell' uno - multitude in unity; and 
there is no doubt that such is the principle of beauty.

Samuel Taylor Coleridge (Dec. 27, 1831)

The standard of beauty is the entire circuit of natural 
forms, — the totality of nature; which the Italians 
expressed by defining beauty "il più nell' uno." 

Ralph Waldo Emerson (1849)

This idea resonates with various cognitive theories of aesthetics where high 
degrees of stimulation being successfully abstracted is experienced as 
being pleasurable.

Is it possible that computer vision techniques can be adapted to analyze 
along the lines of traditional design rules of thumb?

Emerson, R. W. (1979). Nature, addresses, and lectures (2d ed.). New York: 
AMS Press.

Coleridge, S. T., Coleridge, H. N., Coleridge, J. T., & Woodring, C. (1990). Table 
talk. Princeton, N.J.: Princeton University Press



Balance

 Weight
– value, filled versus outlined, size, quantity

 Placement
– imagine placement relative to a fulcrum

Design principles around balance often reflect our learned expectations 
from the physical world where we seek to avoid instability.

Stewart, M. (2008). Launching the imagination : a comprehensive guide to basic 
design (3rd ed.). Boston: McGraw-Hill Higher Education.



Balance

 Weight
– value, filled versus outlined, size

 Placement
– imagine placement relative to a fulcrum



Gestalt

 Law of Prägnanz
 Perceptual grouping
 Grouping impacts balance

Our perceptual cognition seeks to extract simplicity of structure.



Scale and Proportion

 Proportion - relative size within the image
 Scale - absolute size relative to the body

– Often overlooked by those who work virtual



Value Distribution and Color Palette

 Color harmony
 Color contributes to weight
 Value can be more important than color

– higher resolution
– broader range of signal strength



Rule of Thirds

Peter Paul Rubens, Tiger Hunt, c. 1616.



Rule of Thirds

Peter Paul Rubens, Tiger Hunt, c. 1616.
Intuitive use of rule of thirds 
Note focal points
Rule of thirds not discussed until the end of the 18th century
Discussed most frequently with regard to photography
Can computer vision do this kind of analysis? Requires high level of 
abstraction.



Example - Photography Evaluation

 Datta et al. (2006, 2007) 
 3581 photos from a photography oriented social 

networking site. 
 Each photo was rated by the membership. 
 Image processing extracts 56 simple measures.

– e.g. exposure, color distribution and 
saturation, adherence to the “rule of thirds,” 
size and aspect ratio, depth of field, etc.

There have been few attempts to apply standard design principles in 
computational aesthetic evaluation.

Datta, R., Joshi, D., Li, J., & Wang, J. Z. (2006). Studying aesthetics in 
photographic images using a computational approach. Computer Vision - 
Eccv 2006, Pt 3, Proceedings, 3953, 288-301.



Example - Photography Evaluation

 The ratings and extracted features were then 
processed using both regression analysis and 
classifier software.

 This resulted in a computational model using 15 
key features. 

 A software system was then able to classify 
photo quality as “high” and “low” in a way that 
correlated well with the human ratings.



Artificial Neural Networks



Input Layer Hidden Layer Output Layer

Artificial Neural Networks

Inspired by biological neurology, but simplified by many orders of 
magnitude.
Input nodes are exposed to input data. Each connection has a weight 
representing the strength of the connection.
Each hidden node sums each input scaled by its weight.  Each output node 
does the same applying weights.
 With each exposure to data the weights are adjusted either based on 
feedback from a training set or reoccurring input patterns (SOM or self-
organizing map).
In order to create nonlinear models the input summation commonly uses a 
sigmoid transfer function.
Once the network is trained new and novel input should exhibit learned 
behavior at its output.



Input Layer Hidden Layer Output Layer

Artificial Neural Networks

Pixel
Data Result

GOOD !!

BAD

For discrimination tasks you might have one output node per possible 
result.

If only it was this easy!
A significant aspect of ANN use is the preprocessing and presentation of 
input data.
Assigning numerous input nodes per pixel is computationally unworkable 
(at this time.)



Input Layer Hidden Layer Output Layer

Artificial Neural Networks

Pixel
Data

Result

GOOD !!

BAD

Analyzers

But what if we can use image processing to extract overall measures?

This is similar to the earlier example by Datta et al

Potentially more robust to complex nonlinear relationships than statistical 
regression methods.



Artificial Neural Networks

 Among others Todd (1989) created 
sequential networks trained with scores, and 
then used to compose in a similar style.

 Like similar attempts using higher-order 
Markov chains decades earlier, the system 
showed some short term coherence, but no 
real ability to create overall structure.

This is a generative system not really an aesthetic evaluation system.  But it 
is an attempt to capture and model an aesthetic style.

Todd, P. M. (1989). A Connectionist Approach to Algorithmic Composition. 
Computer Music Journal, 13(4), 27-43.

Brooks, Hopkins, Neumann & Wright. "An experiment in musical 
composition." IRE Transactions on Electronic Computers, Vol. 6, No. 1 
(1957).



Artificial Neural Networks

 Phon-Amnuaisuk (2007) Used self-organizing 
maps to extract structure from existing music, and 
then act as a critic for an evolutionary composition 
system.

 He found a lack of global structure and with Law 
(2008) created hierarchical SOMs for higher level 
abstraction. This approach shows some promise.

Other applications have included:

Self Organizing Maps clusters arbitrary data presented to the input layer 
without feedback.

Phon-Amnuaisuk, S. (2007). Evolving music generation with SOM-fitness 
genetic programming. Lecture Notes in Computer Science, 4448 LNCS, 
557-566.

Law, E., & Phon-Amnuaisuk, S. (2008). Towards Music Fitness Evaluation with 
the Hierarchical SOM Applications of Evolutionary Computing (pp. 
443-452): Springer.



Artificial Neural Networks

Other applications have included:

 Gedeon (2008) created an experimental system that 
created “Mondrian-like” images and based on learning 
from a training set (of 1000!) was capable of 
predicting a single viewer’s preferences for new 
images.

This system was only demonstrated for a single person!

Gedeon, T. s. (2008). Neural network for modeling esthetic selection. 
Lecture Notes in Computer Science, 4985 LNCS(PART 2), 666-674.



Evolutionary Systems



Evolutionary Systems

 aka (loosely) Genetic Algorithms
 One of the most important generative art 

systems.
 One where computational aesthetic 

evaluation is key.

Fogel, L. J. (1999). Intelligence through simulated evolution : forty years of 
evolutionary programming. New York: Wiley.
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MUTATION

Evolutionary Systems

Selection - genotypes with better fitness scores are selected more often 
than others, and genotypes with low fitness scores may be removed from 
the gene pool.
Variations - a single genotype can be mutated, or two genotypes may be 
recombined.
Expression - use the genotype to create a corresponding phenotype.
Evaluation - use a fitness function to measure the phenotype 
competitiveness.
Integration - genotypes of sufficient quality are added to the gene pool.
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CROSSOVER

MUTATION

Evolutionary Systems

There are many variations:
Only mutation or only crossover.  Mutation and/or crossover rate high or 
low.
Select and/or remove genotypes on a statistical basis.  Allow weak 
genotypes to survive.
Protect genotypes with a score above a certain threshold.
Alter the gene variation from high to low over the course of evolution. 
(This is called “Simulated annealing”)
Most of all the design of the genotype data structure invites creativity and 
innovation on the part of the programmer.



Evolutionary Art Systems

 L-systems
 cellular automata
 reaction-diffusion systems  
 genetic algorithms 
 artificial life
 diffusion limited 

aggregation

 randomization
 simulated chaos
 combinatorial construction
 data mapping
 tiling and symmetry
 fractals

Generative art systems can be driven by genotypical 
data structures to create form as phenotype.

For a good overview of evolutionary art systems see:

Bentley, P. and Corne, D. (2002). An introduction to creative evolutionary 
systems, in P. Bentley and D. Corne (eds), Creative Evolutionary Systems, 
Morgan Kaufmann, Academic Press, San Francisco, CA, San Diego, CA, pp. 1 
– 75.



Evolutionary Art Systems

 automotive and aeronautic design
 circuit design
 routing optimization
 modeling markets for investment
 computer aided molecular modeling
 encryption and code breaking
 chemical process optimization

Typical applications have objective fitness functions



Evolutionary Art Systems

The problem is evaluating the phenotype to assign a fitness 
score. What kind of fitness function can measure aesthetic 
fitness?

There are two approaches:

Interactive Evolutionary Computing (IEC)
manual selection with small populations & few generations

Automated fitness function
requires Computational Aesthetic Evaluation (CAE)

For an overview of the contemporary challenges in evolutionary art see:

McCormack, J. (2005). Open problems in evolutionary music and art, 
APPLICATIONS OF EVOLUTIONARY COMPUTING, PROCEEDINGS 
3449: 428–436.

Galanter, P. (2010). The problem with evolutionary art is..., in C. DiChio, A. 
Brabazon, G. A. DiCaro, M. Ebner, M. Farooq, A. Fink, J. Grahl, G. Greenfield, P. 
Machado, M. Oneill, E. Tarantino and N. Urquhart (eds), Applications of 
Evolutionary Computation, Pt Ii, Proceedings, Vol. 6025 of Lecture Notes in 
Computer Science, Springer-Verlag Berlin, Berlin, pp. 321–330.

(see http://philipgalanter.com for a copy)



IEC Example: William Latham

William Latham and Stephen 
Todd (1992) developed the 
Mutator system for evolving 
biomorphic forms. 

At each iteration the artist/
operator selects phenotypes 
corresponding to recently 
mutated genotypes.

Todd, S., & Latham, W. (1992). Evolutionary art and computers. London ; San 
Diego: Academic Press.



IEC Example: William Latham

William Latham and Stephen 
Todd (1992) developed the 
Mutator system for evolving 
biomorphic forms. 

At each iteration the artist/
operator selects phenotypes 
corresponding to recently 
mutated genotypes.

Todd, S., & Latham, W. (1992). Evolutionary art and computers. London ; San 
Diego: Academic Press.

The artist/operator essentially navigates through a very large multi-
dimensional solution space in search of a satisfying form.



IEC Example: William Latham

Todd, S., & Latham, W. (1992). Evolutionary art and computers. London ; San 
Diego: Academic Press.



IEC Example - Karl Sims 

(round (log (+ y (color-grad (round (+ 
(abs (round (log (+ y (color-grad 
(round (+ y (log (invert y) 15.5)) x) 
3.1 1.86 #(0.95 0.7 0.59) 1.35)) 0.19) 
x)) (log (invert y) 15.5)) x) 3.1 1.9 
#(0.95 0.7 0.35) 1.35)) 0.19) x)

Karl Sims (1991) published 
a SIGGRAPH paper 
explaining his IEC system 
using evolving expressions.

The phenotype is generated by plugging each pixel location X and Y into the 
expression.

The expression is treated as a genotype by storing it as a parsed data 
structure that allows simple substitutions for mutations and crossover.

Sims, K. (1991). Artificial Evolution For Computer-Graphics. Siggraph 91 
Conference Proceedings, 25, 319-328.



IEC Example - Karl Sims 

Again, how could the evaluation of these images be automated?

Sims, K. (1991). Artificial Evolution For Computer-Graphics. Siggraph 91 
Conference Proceedings, 25, 319-328.



The Fitness Bottleneck

From the earliest efforts interactive assignment of fitness scores 
has dominated evolutionary art practice. 

There was also early recognition that the human artist/operator 
creates what Todd and Werner (1998) called a “fitness 
bottleneck.” IEC systems typically allow only dozens of 
generations rather than hundreds or thousands, and are 
restricted to much smaller gene pools.

Todd, P. M., & Werner, G. M. (1998). Frankensteinian Methods for 
Evolutionary Music Composition. In N. Griffith & P. M. Todd (Eds.), Musical 
networks: Parallel distributed perception and performance. Cambridge, MA: 
MIT Press/Bradford Books.



Crowd Sourced Evaluation
In Galapagos Karl Sims 
(1997) allows the 
audience to express a 
preference via sense 
pads where they stand.

One can imagine now making this even more passive with video based 
crowd analysis and extracting viewing times.



Crowd Sourced Evaluation

Scott Draves’ (2005) 
Electric Sheep 
system allows his 
genetic screen saver 
users around the 
world to approve or 
disapprove of 
phenotypes via the 
Internet. 

Draves, S. (2005). The electric sheep screen-saver: A case study in aesthetic 
evolution. Applications of Evolutionary Computing, Proceedings, 3449, 
458-467.



Crowd Sourced Evaluation

Komar and Melamid’s “America’s Most Wanted” (1997)
The People’s Choice project polled the public about their preferences in 

paintings.
Based on the results regarding subject matter, color, and so on they created 

this painting.

Komar, V., Melamid, A., & Wypijewski, J. (1997). Painting by numbers : Komar 
and Melamid's scientific guide to art (1st ed.). New York: Farrar Straus 
Giroux.



Crowd Sourced Evaluation

Komar and Melamid’s “America’s Most Wanted” (1997)
Corresponding to the public’s like for historical figures and exotic animals 

they included these features.  But also the popular blue lake, family, 
moderate vegetation, game animals.

Of course this isn’t serious science.
Komar and Melamid’s critique was of the politics of public relations and 

institutions that wield statistics as a weapon.
But clearly trending towards the mean is not a way to create the unique 

vision most expect of contemporary artists.



Automated Fitness Functions

 Performance Goals - Form Follows Function
 Error Relative to Exemplars
 Complexity Measures
 Multi-Objective Fitness
 Pareto Optimization



Performance Goals

tors, and the connections define the flow of signals between
these nodes. These graphs can also be recurrent, and as a
result the final control system can have feedback loops and
cycles.

However, most of these neural elements exist within a
specific part of the creature. Thus the genotype for the ner-
vous system is a nested graph: the morphological nodes each
contain graphs of the neural nodes and connections. Figure 5
shows an example of an evolved nested graph which
describes a simple three-part creature as shown in figure 6.

When a creature is synthesized from its genetic descrip-
tion, the neural components described within each part are
generated along with the morphological structure. This
causes blocks of neural control circuitry to be replicated
along with each instanced part, so each duplicated segment
or appendage of a creature can have a similar but indepen-
dent local control system.

These local control systems can be connected to enable
the possibility of coordinated control. Connections are
allowed between adjacent parts in the hierarchy. The neurons
and effectors within a part can receive signals from sensors
or neurons in their parent part or in their child parts.

Creatures are also allowed a set of neurons that are not
associated with a specific part, and are copied only once into
the phenotype. This gives the opportunity for the develop-
ment of global synchronization or centralized control. These
neurons can receive signals from each other or from sensors
or neurons in specific instances of any of the creature’s parts,
and the neurons and effectors within the parts can optionally
receive signals from these unassociated-neuron outputs.

In this way the genetic language for morphology and
control is merged. A local control system is described for
each type of part, and these are copied and connected into
the hierarchy of the creature’s body to make a complete dis-
tributed nervous system. Figure 6a shows the creature mor-
phology resulting from the genotype in figure 5. Again,
parameters describing shapes and weight values are not
shown for the genotype even though they affect the pheno-

Figure 5: Example evolved nested graph genotype. The
outer graph in bold describes a creature’s morphology. The
inner graph describes its neural circuitry. C0, P0, P1, and
Q0 are contact and photosensors, E0 and E1 are effector
outputs, and those labeled “*” and “s+?” are neural nodes
that perform product and sum-threshold functions.
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Figure 6a: The phenotype morphology generated from
the evolved genotype shown in figure 5.

Figure 6b: The phenotype “brain” generated from the
evolved genotype shown in figure 5. The effector outputs
of this control system cause the morphology above to roll
forward in tumbling motions.

Sensors Neurons Effectors

33

Karl Sims (1994) was able to 
evolve and animate virtual 
creatures based on 
performance goals.

The genotype describes a 
system of sensors, neurons, 
effectors, and connections.

A fitness function rewarding 
walking, jumping, swimming, 
and game playing is used.

This begs the question to some extent...what kind of performance yields 
high aesthetic quality?

Sims, K. (1994). Evolving Virtual Creatures. Siggraph '94 Proceedings, 28, 
15-22.



Performance Goals

Driessens and Verstappen (2007) created an evolutionary 
subtractive sculpture system. Each sculpture is started as a 
single cube or cell. Cells are iteratively subdivided into 8 
smaller sub-cells. The genotype is cellular automata-like rule 
sets determining whether or not a given subcell is removed. 
The fitness function is the number of pieces produced. The 
goal is a result yielding one large single piece.

A rather minimal aesthetic standard...an existential or size rule.

http://notnot.home.xs4all.nl/breed/BREEDinfo.html



Performance Goals

The results are manufactured using various rapid prototyping or 3D printer 
technologies.

Saying “the performance goal is ‘make it beautiful’” doesn’t really help.

http://notnot.home.xs4all.nl/breed/BREEDinfo.html



Error Relative to Exemplars

 With the invention of photography pure 
representation became of diminishing 
importance in visual art.

 A difference or error measure comparing a 
phenotype to a real-world example is not 
typically useful as an aesthetic fitness 
function.



Error Relative to Exemplars

 However, intermediate results as an evolved 
image approaches an exemplar can be of 
interest as a kind of abstract art.



Error Relative to Exemplars
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Fig. 10. Progression of an evolution of Walter Benjamin.  The generation 
number is given in parentheses. 

5.3  Evolved Paintings Physical Results 
A painting was physically executed of an evolution similar to Figure 10.  The input 
image, the simulated result and the physical result are shown in Figure 11.   

 
(a) (b) (c) 

Fig. 11. A physically painted evolved painting.  (a) shows the input image, (b) 
shows the simulated evolved painting and (c) physical painting 23 x 30cm robotic painted 
acrylic on canvas. 
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A robotic system for interpreting images into 
painted artwork 

Carlos Aguilar, Hod Lipson 
Cornell Computational Synthesis Lab, Cornell University, Ithaca,NY, USA 

http://ccsl.mae.cornell.edu 

e-mail: cga9@cornell.edu, hod.lipson@cornell.edu 

Abstract 
We report on a robotic system that can physically produce paintings with a wide 
range of artistic media such as acrylic paint on canvas. The system is composed of 
an articulated painting arm and a machine-learning algorithm aimed at determining a 
series of brushstrokes that will transfer a given electronic image onto canvas. An 
artist controlling the system is able to influence the resulting art piece through choice 
of various parameters, such as the palette, brush types and brushstroke parameters. 
Alternatively, an artist is able to influence the outcome through varying the 
algorithmic parameters and feedback of the learning algorithm itself. In these results, 
a genetic algorithm used a painting simulation to optimize similarity between the 
target and the source images. 

(a) 

 

(c) 
 

(b) 

Fig. 1. The robotic painting system: (a) An articulated 6DOF arm holding a 
paintbrush to a 23 x 30cm canvas; (b) A close-up view of the brush holder; (c) 

sample painting of a portrait 
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Fig. 1. The robotic painting system: (a) An articulated 6DOF arm holding a 
paintbrush to a 23 x 30cm canvas; (b) A close-up view of the brush holder; (c) 

sample painting of a portrait 

 Aguilar and Lipson 
(2008) constructed a 
physical painting 
machine driven by an 
evolutionary system.

 The fitness function 
compared simulated 
brush strokes against 
a photograph.

Once the error measure was sufficiently minimized the winning genes were 
then used to drive a robotic painting arm.

(pictured is Walter Benjamin author of “The Work of Art in the Age of 
Mechanical Reproduction”)

Aguilar, C., & Lipson, H. (2008). A robotic system for interpreting images into 
painted artwork. Paper presented at the International Conference on 
Generative Art. 



Error Relative to Exemplars

 The use of relative error can work well when 
programming music synthesizers to mimic other sounds. 

 Comparisons with recordings of traditional acoustic 
instruments can be used as a fitness function. 

 And while the evolutionary system converges on an 
optimal mimesis interesting timbres can be discovered 
along the way

 McDermott et al (2005) and Mitchell and Pipe (2005)

McDermott, J., Griffith, N. J. L., & O’Neill, M. (2005). Toward User-Directed 
Evolution of Sound Synthesis Parameters. Applications of Evolutionary 
Computing, Proceedings, 3449, 517-526.

Mitchell, T. J., & Pipe, A. G. (2005). Convergence Synthesis of Dynamic 
Frequency Modulation Tones Using an Evolution Strategy Applications on 
Evolutionary Computing (pp. 533-538).



Error Relative to Exemplars

Alsing (2008) helped to popularize the error minimization 
approach to mimetic rendering with a project that 
evolved a version of the “Mona Lisa” using 50 
overlapping semi-transparent polygons.

http://rogeralsing.com/2008/12/07/genetic-programming-evolution-of-mona-
lisa/



Error Relative to Exemplars

 Magnus (2006) and Fornari (2007) independently 
recombining short sound files using an existent sound 
file as a target, but using evolving intermediate results.

 Hazan et al. (2006) used evolutionary methods to 
develop regression trees for expressive musical 
performance. Using jazz standards as a training set, the 
resulting regression trees could transform arbitrary flat 
performances into expressive ones.

Additional examples in music include:

Magnus, C. (2006). Evolutionary Musique Concrète. In F. Rothlauf & J. Branke 
(Eds.), Applications of Evolutionary Computing, EvoWorkshops 2006 
(pp. 688-695). Berlin: Springer.

Fornari, J. (2007). Creating soundscapes using evolutionary spatial control. 
Lecture Notes in Computer Science, 4448 LNCS, 517-526.

Hazan, A., Ramirez, R., Maestre, E., Perez, A., & Pertusa, A. (2006). Modelling 
Expressive Performance: A Regression Tree Approach Based on 
Strongly Typed Genetic Programming Applications of Evolutionary 
Computing (pp. 676-687).



Complexity Measures

Machado and Cardoso’s (2002, 2003) NEvAr system 
uses computational aesthetic evaluation methods with 
Sims-like evolving expressions. Their fitness function 
is related to Birkhoff’s aesthetic measure: 

“...the aesthetic value is, to some 
extent, linked with the complexity of the 
image and with the mental work 
necessary to its perception.”

Figure 3. Example of the recombination operation. The code of the individuals A and B is recombined by
exchanging the sub-trees implicitly defined by 2 randomly chosen points PA and PB, giving rise to the individuals
A’ and B’.

2.3 Assessment

Working with NEvAr is an iterative process, as the number of populations increases the average quality of
the images also tends to increase, giving rise to new, interesting, and aesthetically sound images (at least to
the eye of the user conducting the program). Like any other tool, NEvAr requires a learning period. To
explore all the potential of a tool, the user must know it in detail and develop or learn an appropriate work
methodology. The results, and user satisfaction, depend not only on the tool but also on its mastering. In
Figure 3 we present some examples of images generated with NEvAr. Additional images can be found at:
http://www.dei.uc.pt/~machado/NEvAr/

   

Figure 3. Some examples of images created with NEvAr.

3. Recent Developments

As stated before, the ultimate goal of this project is to build an Artificial Artist. In its current form the
automatic fitness assignment procedure [3] only takes into account the lightness information of the images,
discarding the hue and saturation information. Therefore, in this mode of execution, we are limited to
greyscale images. Figure 4 shows several images generated by NEvAr without any kind of human
intervention.

Fitness scores based on aesthetic quality rather than simple performance or 
mimetic goals are much harder to come by.

Their belief is that fractal compression is similar to the way humans process 
images, i.e. apparent complexity is easily described due to self-similarity.

Machado, P., & Cardoso, A. (2002). All the Truth About NEvAr. [10.1023/A:
1013662402341]. Applied Intelligence, 16(2), 101-118.

Machado, P., & Cardoso, A. l. (2003). NEvAr – System Overview. Paper 
presented at the International Conference on Generative Art. 



Complexity Measures

 Unity in Variety
 For the authors “...pleasure experienced when finding a 

compact percept (i.e., internal representation) of a 
complex visual stimulus...”

 Resistance to jpeg compression (local high frequency 
compressibility) is a proxy for the “complexity of the 
visual stimulus” (CV). 

 Resistance to fractal compression (global 
compressibility) is a proxy for the “complexity of the 
percept” (CP), i.e. perceptual effort.

Aesthetic Quality related to the ratio of visual stimulus complexity to 
percept complexity is a sophistication of degree of order / degree of 
complexity ratio of Birkhoff, especially when you recall Birkhoff ’s 
underlying cognitive model.



Complexity Measures
 Resistance to jpeg compression is a proxy for the 

“complexity of the visual stimulus” (CV). 
 Resistance to fractal compression is a proxy for the 

“complexity of the percept” (CP), i.e. perceptual effort.
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Machado and Cardoso neither suggested that the employed JPEG complexity was
able to fully capture the concept of image complexity, nor that the fractal image
compression was able to capture the complexity of visual perception. They posited
that JPEG was closer to visual complexity than fractal compression, and that fractal
compression was closer to processing complexity than JPEG, subsequently testing
the possibility of using these measures as rough estimates for these concepts in the
context of a specific, and limited, aesthetic theory.

The following formula was proposed as a way to capture the previously-mentioned
notions (Machado and Cardoso; 1998):

aesthetic value =
CV a

(CP(t1)⇥CP(t0))b ⇥

1

(CP(t1)�CP(t0)
CP(t1) )c

(11.1)

where a, b and c, are parameters used to tune the relevance given to each of the
components. The left side of the formula rewards those images which have high CV
and low CP estimates at the same time, while the right side rewards those images
with a stable CP across time. The division by CP(t1) is a normalisation operation.
The formula can be expanded in order to encompass further instants in time, but
the limitations of the computational implementation led the authors to use only two
instants in their tests.

The images of the DJT were digitalised, converted to greyscale, and resized to a
standard dimension of 512 ⇥ 512 pixels, which may involve changes in the aspect
ratio. The estimates for CV , CP(t1) and CP(t0) were computed for the resulting
images. Using these estimates, the outcome of formula (1) was calculated for each
of the images. For each of the 90 pairs or triads of images comprising the DJT, the
system chose the image that yielded a higher value according to formula (1).

The percentage of correct answers obtained by the AJS depends on the values of
the parameters a, b and c. Considering all combinations of values for these param-
eters ranging in the [0.5,2] interval with 0.1 increments, the maximum percentage
of correct answers was 73.3% and the minimum 54.4%. The average success rate of
the system over the considered parametric interval was 64.9%.

As previously mentioned, the highest average percentage of correct answers in
human tests in the DJT reported by Eysenck and Castle (1971) is 64.4%, and was
obtained by subjects that were final year fine art graduates, a value that is surpris-
ingly similar to the average success rate of our system (64.9%).

Although comparing the performance of the system to the performance of hu-
mans is tempting, one should not jump to conclusions! A similar result cannot be
interpreted as a similar ability to perform aesthetic judgments. As previously men-
tioned, humans may follow principles that are not exclusively in aesthetic order to
choose images. Moreover, since the test aims at differentiating between humans,
it may take for granted principles that are consensual between them, and the AJS
would be unable to identify. Finally, the results say nothing regarding the validity of
the test itself (a question that is outside the scope of our research). Thus, what can
be concluded is that the considered formulae and estimates are able to capture some

Page:316 job:ComputersCreativity macro:svmult.cls date/time:23-Nov-2011/22:11

“The left side of the formula rewards those images which have high 
CV and low CP estimates at the same time, while the right side 
rewards those images with a stable CP across time.”



Multi-Objective Fitness

Aesthetic judgments are typically multidimensional. 
For example, evaluating a traditional painting might 
generate a set of scores regarding color, balance, 
value, and so on.  A typical multi-objective fitness 
function might involve a weighted sum of factors.

Fitness = (w0 ⇤ color) + (w1 ⇤ balance) + (w2 ⇤ value)



Multi-Objective Fitness

Can each score in the set be independently measured?
How are the weights determined?
Why assume there are no non-linear relationships?
Preservation in the gene pool of otherwise weak 
individuals with a particular strength in one aspect?

Fitness = (w0 ⇤ color) + (w1 ⇤ balance) + (w2 ⇤ value)



Pareto Optimality

 Pareto Optimality is a method of comparing 
score sets without a weighted summation.

 Set A is said to dominate set B if 
– each score in A is at least as good as in B, and
– at least one score in A is better than B

 A set of scores is said to be rank 1 or Pareto 
Optimal if it isn’t dominated by any other set.

Neufeld, C., Ross, B. J., & Ralph, W. (2008). The Evolution of Artistic Filters. In 
J. Romero & P. Machado (Eds.), The art of artificial evolution : a handbook 
on evolutionary art and music (pp. 335-356). Berlin: Springer.

Ross, B. J., & Zhu, H. (2004). Procedural texture evolution using multi-
objective optimization. New Generation Computing, 22(3), 271-293.

Greenfeld, G. R. (2003). Evolving aesthetic images using multiobjective 
optimization. Cec: 2003 Congress On Evolutionary Computation, Vols 1-4, 
Proceedings, 1903-1909.



Pareto Optimality

 The sets of scores that are rank 1 constitute 
the Pareto Set or the Pareto Front.

 For crossover, selecting rank 1 genotypes or 
ignoring dominated genotypes can help to 
combine differing strengths of parents into a 
single individual.



Emergent Aesthetics

Dorin (2005) 

“the ‘eco-systemic’ approach permits simultaneous, 
multidirectional and automatic exploration of a 
space of virtual agent traits without any need for a 
pre-specified fitness function. Instead, the fitness 
function is implicit in the design of the agents, their 
virtual environment, and its physics and chemistry.” 

Dorin, A. (2005). Enriching Aesthetics with Artificial Life. In A. Adamatzky & 
M. Komosinski (Eds.), Artificial life models in software (pp. 415-431). 
London: Springer-Verlag.



Emergent Aesthetics - Coevolution

 In evolution there is no absolute “correct answer.”
 An adaptation’s value is relative to its environment.
 Part of that environment is other living things.
 Coevolution is a sort of “arms race” of adaptation.
 But it can also be a process of ongoing symbiosis. 



Emergent Aesthetics - Coevolution

Todd and Werner (1998)

 (Virtual) male composers produce songs.
 Female critics judge the songs for mate selection 

based on a probability table of note transitions.
 Males are rewarded for surprising females.
 Transition tables coevolve and slowly vary with each 

new generation of females.

Note that this leads to a balance of expected and surprising results. Todd 
says this is because random notes are less surprising because they don’t set 
high expectations.  More overall surprise is created via note sequences that 
lead to a high expectation and then violate it.

Todd, P. M., & Werner, G. M. (1998). Frankensteinian Methods for 
Evolutionary Music Composition. In N. Griffith & P. M. Todd (Eds.), Musical 
networks: Parallel distributed perception and performance. Cambridge, MA: 
MIT Press/Bradford Books.



“One of the biggest problems with our 
coevolutionary approach is that, by removing the 
human influence from the critics (aside from those in 
the initial generation of folk-song derived transition 
tables), the system can rapidly evolve its own 
unconstrained aesthetics. After a few generations of 
coevolving songs and preferences, the female 
critics may be pleased only by musical sequences 
that the human user would find worthless.”

Emergent Aesthetics - Coevolution

Coevolution here creates aesthetics effective in the virtual environment but 
unlistenable to human ears.



Emergent Aesthetics - Curious Agents

Saunders & Gero (2004)

 Reynolds established flocking 
via local behavior of agents.

 Helbing and Molnár developed 
the related social force model 
to simulate crowd behavior 
and compare with empirical 
results.

of overcrowding at large public gatherings like football
stadiums and train stations when an individual’s ability to
take independent action is diminished by the lack of avail-
able space.
Unfortunately, purely reactive agents do not permit the

simulation of individual behavior in many, more common,
situations that would be desirable when analyzing the design
of buildings for public use such as train stations, museums,
and galleries where the support of problem solving, learn-
ing, and exploration are key functions of the building. The
remainder of this paper presents a possible future direction
for agent-based simulation using more complex agents that
can learn from experience and report their individual eval-
uations. Adding learning to the agent model permits the
simulation of potentially important agent behavior, for exam-
ple, curiosity. The agents can then report evaluations of a
design that are situated in their individual experience, such
as their level of interest as they explore.

2. SIMULATING CROWDS

Reynolds ~1987! demonstrated that realistic simulations of
groups of animals could be produced using simple reactive
agents executing a small number of carefully chosen rules.

2.1. Flocks, herds, and schools

Reynolds ~1987! proposed a set of four simple rules, that,
when executed together, within simulated agents, also known
as boids, resulted in realistic group behavior similar to a
flock of birds, a herd of cattle, or a school of fish. The rules
executed by each agent are the following:

1. separation: steer to avoid local flock-mates.
2. alignment: steer toward the average heading of local
flock-mates.

3. cohesion: steer to move toward the average position
of local flock-mates.

4. avoidance: steer to avoid running into local obstacles
or nonflock-mates.

Separation prevents agents from overcrowding under nor-
mal conditions. Alignment aligns each agent with its imme-
diate neighbors so that they move forward as a group.
Cohesion maintains a “natural-looking” closeness to a neigh-
borhood of agents. Finally, avoidance allows an agent to go
around obstacles and avoid potential predators.
The four rules described above are used to implement

steering behaviors using a very simple model of locomo-
tion that applies a force to the body of the agent that is
calculated to achieve the desired consequence of applying a
rule. Examples of the kinds of forces applied during a flock-
ing simulation are illustrated in Figure 1. During a simula-
tion the forces produced for each rule are combined into a

single force applied to the body of the agent; often this is
achieved simply by summing the forces.
The flocking algorithm has been extended to simulate

the motion of crowds of people in simulations and games
~Woodcock, 1999!. Flocking is used in these instances as a
way for crowds to follow paths determined using by path-
finding routines. Because the original flocking model does
not contain any notion of moving toward a goal, the appli-
cations of flocking in game environments often require the
addition of a rule to move agents toward waypoints along a
path to a goal location. In this way the extended flocking
algorithm maintains a group’s formation and local obstacle
avoidance, leading to the natural-lookingmovement of agents
between goals.

2.2. The social force model

The social force model is a microscopic model of pedes-
trian behavior that has been used to model self-organizing
phenomena observed in crowds of people ~Helbing & Mol-
nár, 1995!. Helbing and Molnár developed the social force
model to simulate crowd behavior to gain a better under-
standing of empirical results. The social forces in the model
do not represent physical forces exerted upon a pedestrian;
rather, they are an approximation of the internal motiva-
tions of the individuals to move in certain directions. The
social forces modeled by each agent follow.

1. Pedestrians are motivated to move as efficiently as
possible to a destination.

2. Pedestrians wish to maintain a comfortable distance
from other pedestrians.

3. Pedestrians wish to maintain a comfortable distance
from obstacles.

4. Pedestrians may be attracted to other pedestrians or
objects ~e.g., posters!.

Fig. 1. The steering behaviors used in Reynolds’ model of flocking.
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algorithm maintains a group’s formation and local obstacle
avoidance, leading to the natural-lookingmovement of agents
between goals.

2.2. The social force model

The social force model is a microscopic model of pedes-
trian behavior that has been used to model self-organizing
phenomena observed in crowds of people ~Helbing & Mol-
nár, 1995!. Helbing and Molnár developed the social force
model to simulate crowd behavior to gain a better under-
standing of empirical results. The social forces in the model
do not represent physical forces exerted upon a pedestrian;
rather, they are an approximation of the internal motiva-
tions of the individuals to move in certain directions. The
social forces modeled by each agent follow.

1. Pedestrians are motivated to move as efficiently as
possible to a destination.

2. Pedestrians wish to maintain a comfortable distance
from other pedestrians.

3. Pedestrians wish to maintain a comfortable distance
from obstacles.

4. Pedestrians may be attracted to other pedestrians or
objects ~e.g., posters!.

Fig. 1. The steering behaviors used in Reynolds’ model of flocking.
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e.g. “Personal space” creates a culturally determined social force for 
separation.

Saunders, R., & Gero, J. S. (2004). Curious agents and situated design 
evaluations. Ai Edam-Artificial Intelligence for Engineering Design Analysis 
and Manufacturing, 18(2), 153-161.

Reynolds, C. W. (1987). Flocks, herds, and schools: A distributed behavioural 
model. Computer Graphics, 21(4), 25–34.

Helbing, D., & Molnár, P.  (1997). Self-organization phenomena in pedestrian 
crowds. In Self-Organization of Complex Structures: From Individual to 
Collective Dynamics Schweitzer, F., Ed., pp. 569–577. London: Gordon & 
Breach.
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Saunders and Gero add a new force they call “curiosity.” 
Agents move towards potentially interesting (novel) areas.

Obviously, the forces implemented in the social force
model are very similar to the rules devised by Reynolds for
flocking; the social forces 2, 3, and 4 are very similar to
separation, avoidance, and cohesion. The social force model
does not include a force to maintain alignment among pedes-
trians as with flocking, but it does add a force to model the
movement between locations as used in gaming environ-
ments. Detailed mathematical descriptions of these forces
can be found in Helbing and Molnár ~1995!.
Despite its simplicity, computer simulations have shown

that the social force model is capable of realistically describ-
ing several interesting aspects of observed crowd behav-
iors. In one instance, predictions based on simulations of
crowd behavior at junctions prompted new empirical research
into human crowd behavior that confirmed the emergence
of transient round-about motions ~Helbing &Molnár, 1997!.

2.2.1. Agent-centric evaluations
In their experiments with emergent crowd behavior around

doors, Helbing and Molnár used some simple agent-centric
measures to evaluate the efficiency and discomfort for each
pedestrian ~Helbing & Molnár, 1997!. Efficiency is mea-
sured for a pedestrian as the average difference between the
speed it is walking toward its goal and its desired walking
speed. Discomfort is calculated as a function of the number
of direction changes during a simulation that a pedestrian
must perform to negotiate the built environment and other
pedestrians.
Using agent-centric evaluations allowed Helbing andMol-

nár to evaluate the performance of simulated spaces using
nonhomogenous crowds of pedestrian agents, for example,
the agents used in crowd simulations varied in their desired

walking speed to simulate younger and older pedestrians
within the same crowd. This conveys an improvement in
the nature of the evaluation: a simpler measure of effi-
ciency, for example, number of pedestrians to pass a given
point per minute, would not adapt to crowds consisting of
pedestrians with differing preferences.

3. CURIOUS AGENTS FOR DESIGN
EVALUATION

The agent model presented in this paper adds a model of
curiosity based on learning to the social force model to
support the evaluation of environments that are designed to
stimulate exploration. This curious social force model
extends Helbing and Molnár’s model with the addition of a
single rule, “Pedestrians are motivated to move toward
potentially interesting areas.”

3.1. Curious agent architecture

The architecture of the curious agents used to evaluate
designs is illustrated in Figure 2. The curious agent com-
prises six primary functions: sense, learn, detect novelty,
calculate interest, plan, and act. In addition, each agent
requires a long-term memory to store category prototypes.
Sensing samples the world to produce a stimulus pattern

that characterizes its environment according to the abilities
of the agent. Learning updates prototypes stored in long-
term memory to better reflect the agent’s experiences as
new types of stimulus pattern are produced. The differences
between a new stimulus pattern and the closest matching
category prototype are used to calculate a measure of the

Fig. 2. The architecture of a curious agent.
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Each agent processes sensory input, maintains long-term memory, compares 
the two to detect novelty, and then tends to navigate towards novelty.

Novelty is measured by inference from the error function from a self-
organizing map artificial neural network.

Akin to the Wundt Curve and Effective Complexity (see later), curiosity is 
maximized when the stimulus is a balance of similarity and difference to 
previous experience.  
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gallery with new ones while they are in the open space
below the gallery.
Figure 11~a! shows crowd behavior similar to that illus-

trated in Figure 9 above, where agents become congested
around the early works in the gallery but stream past the
latter works because the gallery has been poorly arranged.
Figure 11~b! shows crowd behavior similar to that illus-
trated in Figure 10 above, where agents become evenly
spread out in the gallery because they find each room equally
interesting.
Curious agents have complex behavior that changes over

time with exposure to new experiences. The example prob-
lem given in this paper of designing an interesting gallery is
further compounded if one assumes that agents will visit
the same gallery more than once. Figure 11~c! shows the
behavior of agents when they are allowed to visit the gal-
lery multiple times in succession and retain the memory of
their previous visits. It shows how the gallery eventually
becomes “boring” for all of the agents, indicated by the
tight formation that the majority of agents have taken while
streaming past all of the works because they are no longer
of any interest. The question of how a curator maintains the
interest of visitors that have already experienced many of
the works in previous visits is one that may be explored
in future research using curious agents and situated design
evaluations.
The example problem of curating a gallery illustrates

how the use of curious agents in a simulated environment
allows a designer to experiment with different layouts to
maximize the interestingness reported by visitors. The use
of situated design evaluations opens up new possibilities
for using optimization techniques, such as genetic algo-
rithms, to explore the space of possible gallery layouts sys-
tematically. Given the complex nature of the group behavior
displayed by groups of people, and modeled by curious
agents, the use of intelligent design tools that can assist in
the planning process would be of great benefit to designers.
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Fig. 11. Screenshots of the curious gallery system running different simulations of gallery arrangements and agent visit strategies.
~a!Apoorly arranged gallery populated by agents on single visits, ~b! a well-arranged gallery populated by agents on single visits, and
~c! a well-arranged gallery populated by agents on multiple visits.
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 (a) Poorly arranged gallery for single visit agents
 (b) Well arranged gallery for single visit agents
 (c) Well arranged gallery for multiple visit agents

Curious agents
in a gallery of 
monochrome 

paintings

(a) the paintings are not sequenced to present incremental novelty, so 
visitors bunch up in the first room (entering in the left door), and then leave 
quickly.

(b) the paintings are sequenced with novelty that is neither great nor small.  
The result is even traffic flow.

(c) after several visits the agents walk through the gallery rather quickly and 
efficiently.



Emergent Aesthetics - Agent Swarms

Urbano (2006)

 Various artists have applied fixed aesthetics using flocking 
agents (a la Reynolds) that lay down virtual paint. 

 Urbano’s “Gaugants” have one-to-one transactions.
 Each forms consent or dissidence regarding paint color.
 The dynamics are somewhat reminiscent of scenarios 

studied in game theory (e.g. the Prisoner’s Dilemma).
 Although there is no overt evaluation there is an emergent 

aesthetic based on negotiations among the agents.
Urbano, P. (2006). Consensual paintings. Applications Of Evolutionary 
Computing, Proceedings, 3907, 622-632.
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same position and orientation, but different colours and Rots. The Gaugants only 
imitate the colours of the others (Rot is fixed since the beginning). In this experiment 
we consider that each painter may communicate with any other. The non-interactive 
individual behaviour consists only in rotating Rot degrees and going forward a num-
ber of steps (speed). Speed is a global parameter and also not subject of imitation. The 
dissident only changes his colour (mutation). 

Fig. 2 shows three snapshots of a painting evolution along time (population of 
2000 painters divide in groups of 20 groups 100 elements. 

   

Fig. 2. Evolution of a painting. 2000 micro-painters divided in 20 groups of 100 elements, dp = 
0,001. MaxRot is 20 and any agent can imitate another (global communication). 

We can see that initially every group element is in the same patch but because they 
do different rotations, the one-colour spots get larger and larger, and after a while, 
every agent is dispersed in the tableau creating a confused background that highlights 
the initial spots. The fact that any micro-painter can choose any other as a partner is 
the responsible for having similar forms and colours in different parts of the tableau. 
We can see also different consensual areas, implying different consensus durations—
this is due to the change of the equals-threshold during dissidence. 

 

Fig. 3. Gallery of 3 Gaugant paintings 

In figure 3 we show 3 paintings that were made by different population dimen-
sions, initial group divisions, speed and MaxRot. For every one we have a population 
of 2000 agents and dp=0,001. These and other pictures can be seen in 
http://www.di.fc.ul.pt/~pub/gaugants. 

2000 agents mutating and globally negotiating color
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2000 agents globally negotiating color and direction
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5.4   Experiment 2 

In the second experiment Gaugants will imitate both colour and orientation. The dis-
sident will change colour and orientation. Moving is just going forward a number of 
speed units (global parameter) and rotating to the right a random number of units 
(between 0 and Rot). MaxRot is 6 and each group imposes to theirs elements the same 
position and orientation. Each element begins with a random colour and Rot is ran-
domly chosen between 0 and MaxRot. 

In figure 4 we show the evolution of a painting made by a population of 2000 ele-
ments divided in 30 groups where everybody can choose any other as a partner to 
interact. We can see clearly the sequence of consensus (specially due to colour, the 
change of orientation was very light). 

Looking at figure 5, showing a painting that we call The Swans we can see clearly 
that orientation is changed during dissident behaviour. 

   

Fig. 4. Three snapshots of a painting by 2000 agents that imitate both colour and orientation 

 

Fig. 5. The swans. Four initial groups of 500 agents each. 
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Emergent Aesthetics - Niche Construction

 Niche construction as single player coevolution. 
 Agents have a preferred environment.
 Agents can alter their environment to preference.
 As a more preferred environment is created those 

with the strongest preference are most encouraged.
 This creates a feedback loop creating an ever 

deepening evolutionary niche.



McCormack and Bown (2009)
 Drawing agents move leaving marks and spawning offspring.
 They stop when they intersect already existing marks.
 They sense the local density of already existing marks.
 Each agent also has a genetic density preference.
 Initially agents that prefer low density will succeed.
 Agents will then encounter higher densities of marks.
 High density agents will draw more and reproduce.
 This reinforcing feedback deepens the niche and preference.

Emergent Aesthetics - Niche Construction

McCormack, J., & Bown, O. (2009). Life's What You Make: Niche 
Construction and Evolutionary Art. Paper presented at the Proceedings of 
the EvoWorkshops 2009 on Applications of Evolutionary Computing. 
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Fig. 3. Two example drawings produced by the agent system (no niche construction)

While the drawings are interesting, they are largely homogeneous, both in
terms of the style and overall tonal density observed in the images produced. By
adding a niche construction process the images become much more heterogeneous
and exhibit greater aesthetic variation.

The Drawing Niche Construction Model. To add niche construction to
the drawing model, each agent is given an additional allele in its genome: a
local density preference δi (a normalised floating point number). This defines
the agent’s preference for the density of lines already drawn on the canvas in
the immediate area of its current position, i.e. its niche (Fig. 4). In a preferred
niche, an agent is more likely to give birth to offspring and has a better chance of
survival. As children inherit their parent’s genes they are more likely to survive
as they have a similar density preference. So in a sense, parents may construct
a niche and pass on a heritable environment well-suited to their offspring.

For each agent, i, δi defines it’s preferred niche. Local density (the ratio of
inked to blank canvas per unit area) is measured over a small area surrounding
the agent at each time step. Proximity to the preferred niche determines the
probability of reproduction of new agents, given by: Pr(reproduction) = fi ·
cos(clip(2π(∆pi − δi)),−π

2 , π
2 ), where ∆pi is the local density around the point

pi, the agent’s location. fi is the agent’s fecundity and ‘clip’ is a function that
limits the first argument to the range specified by the next two. Being in a
non-preferred niche also increases the chances of death.

Agents begin with a low density preference, uniformly distributed over [0, 0.25].
Beginning the drawing on a blank canvas means that only those agents that prefer
low density will survive. As the drawing progresses however, more ink is added to
the canvas and agents who prefer higher densities will prosper. At each birth the
agents genome is subject to the possibility of random mutation (proportional to
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Fig. 4. The niche construction mechanism for drawing agents, who try to construct a
niche of local density that satisfies their genetic preference

the inverse of the genome length), allowing offspring to adapt their density prefer-
ence and drawing style as the drawing progresses. Eventually the population be-
comes extinct, since high density favouring agents don’t have much room to move,
and the drawing finishes. Some example drawings are shown in Fig. 5. Notice the
greater stylistic variation and heterogeneity over the images shown in Fig. 3.

Fig. 5. Two example drawings produced with the addition of niche construction

2.2 Musical Niche Construction

The RiverWave model is a sonic ecosystem in which agents contribute to the
construction of an evolving additive synthesis soundscape. The agents inhabit a
sonic environment which they contribute to and this environment in turn defines
selection pressures for the agents. The model explores the long term evolution-
ary dynamics of a system in which environmental conditions and genetically
determined behaviours coevolve, and demonstrates the efficacy with which an

Emergent Aesthetics - Niche Construction

Drawing on the left is without niche construction, with niche construction 
on the right. 

The aesthetics of the drawing develop over time as it is drawn.



Galanter (2012) 

“If the goal is the creation of robust systems for 
meta-aesthetic exploration these evolutionary 
system extensions seem to be quite beneficial.
However, if the goal is to evolve results that appeal 
to our human sense of aesthetics there is no 
reason to think that will happen.”

Emergent Aesthetics

This goes back to the recognition that there is Type 1 and Type 2 CAE.

Galanter, P. (2012 in press). Computational Aesthetic Evaluation: Past and 
Future. In J. McCormack & M. d'Inverno (Eds.), Computers and Creativity. 
Berlin: Springer.



Complexity-based Models of Aesthetics



Complexity Measures

C
om
pl
ex
ity
Disorder

Incompressibility
Order

Compressibility

Information and
Algorithmic Complexity

Bense (1965) and Moles (1966)
Information Aesthetics after
Shannon’s Information Theory

Shannon’s information theory describes the information capacity of a channel.

The more disordered the signal, the less compressible it is, the more information it carries.

Bense and Moles adapted these ideas in Information Aesthetics.

This idea of complexity opposing order is found in Berkhoff, Machado, and others

Shannon, C. E. (1948). A mathematical theory of communication. The Bell System Technical Journal, 
27(3), 379--423.

Bense, M. (1965). Aesthetica; Einführung in die neue Aesthetik. Baden-Baden,: Agis-Verlag.

Moles, A. A. (1966). Information theory and esthetic perception. Urbana,: University of Illinois 
Press.



Complexity Measures

C
om
pl
ex
ity
Disorder

Incompressibility
Order

Compressibility

Information and
Algorithmic Complexity

Kolmogorov’s (1965) 
Algorithmic Information Content
adapted by Schmidhuber’s (2012)
Formal Theory of Creativity

Kolmogorov has a similar notion of algorithmic complexity.  Again relative 
incompressibility (this time of the code used to implement the algorithm in 
question) is equated with complexity.

This is adapted in Schmidhuber’s Formal Theory of Creativity.

Schmidhuber, J. (2012 in press). A Formal Theory of Creativity to Model the 
Creation of Art. In J. McCormack & M. d'Inverno (Eds.), Computers and 
Creativity. Berlin: Springer.

Kolmogorov, A. N. (1965). Three approaches to the quantitative definition of 
information. Problems in Information Transmission, 1, 1-7.



Complexity Measures

E!ective Complexity

C
om
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ex
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Disorder

Incompressibility
Order

Compressibility

Information and
Algorithmic Complexity

Gell-Mann and Lloyd’s (1996)
Effective Complexity offers
a notion of complexity more
consistent with our 
experience.

Complexity is a balance of order and disorder

Gell-Mann, M., & Lloyd, S. (1996). Information measures, effective 
complexity, and total information. Complexity, 2(1), 44-52.



E!ective Complexity

C
om
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ex
ity

Disorder
Incompressibility

Order
Compressibility

biological life

crystals atmospheric gas

Complexity Measures

We find the balance of order and disorder in biological life more complex 
than either highly ordered or disordered systems.



E!ective Complexity

C
om
pl
ex
ity

Disorder
Incompressibility

Order
Compressibility

evolutionary systems
and a-life

symmetry
and tiling randomization

chaotic systemsfractals and
L-systems

Complexity Measures

Effective complexity gives us a way to order our generative art systems

And it may be a more effective way to apply notions of complexity in 
aesthetic evaluation

Galanter, P. (2003). What is Generative Art? Complexity theory as a context 
for art theory. Paper presented at the International Conference on 
Generative Art, Milan, Italy.

      (see http://philipgalanter.com for a copy)

Galanter, P. (2012 in press). Computational Aesthetic Evaluation: Past and 
Future. In J. McCormack & M. d'Inverno (Eds.), Computers and 
Creativity. Berlin: Springer.



The Future of CAE
Psychological Models, Empirical Studies, and Neuroaesthetics



The lack of cognitive science insight

Greenfield (2008) 

“...it was difficult to find an evaluation scheme that made 
artistic sense. Much of the problem with the latter arises 
as a consequence of the fact that there is very little data 
available to suggest algorithms for evaluating aesthetic 
fitness. ...It would be desirable to have better cognitive 
science arguments for justifying measurements of 
aesthetic content.” 

In Greenfield’s work on coevolution he notes that we don’t understand 
aesthetic judgement in humans, and that makes it difficult to derive or 
justify algorithms for CAE.

 
“Black box” techniques such as statistical methods and artificial neural 

networks have had limited success

Greenfield, G. R. (2008). Co-evolutionary Methods in Evolutionary Art. In J. 
Romero & P. Machado (Eds.), The Art Of Artificial Evolution (pp. 
357-380): Springer Berlin Heidelberg.



Brain Complexity

 The human brain has about 1015 connections.
 Individual neurons are informationally more complex 

than bits (analog, nonlinear summation, irregular 
synapses, etc.)

 Glial cells make up 90% of the brain and new studies 
suggest they actively participate in processing

 Digital circuits have a 107 advantage in switching 
speed, but that isn’t enough to compensate.

No wonder CAE is so difficult.  Note the hardware nature requires for 
human aesthetics.

Don’t confuse 10^15 connections with 10^15 bits.

Glial cells seem to be more than just glue an substrate.

Koob, A. (2009). The Root of Thought: What Do Glial Cells Do? Mind 
Matters  Retrieved 11/29/09, 2009, from http://www.scientificamerican.com/
article.cfm?id=the-root-of-thought-what



Brain Complexity

 But much simpler brains exercise a kind of aesthetic 
judgement in mate selection.

 Watanabe (2009) demonstrated that pigeons could be 
trained to reliably categorize paintings made by 
children as “good” and “bad.”

 His prior studies (2001) had demonstrated that pigeons 
could learn to discriminate between artists, e.g. Monet 
vs. Picasso.

Using operant conditioning pigeons were trained using a set of paintings 
categorized by adults.
Then tested with a previously unseen “holdout set” of paintings.
So maybe we only need “bird brain” computation.
But note that pigeon neurology is heavily invested in visual processing.

Watanabe , S. (2009). Pigeons can discriminate “good” and “bad” paintings by 
children. [10.1007/s10071-009-0246-8]. Animal Cognition, 13(1).

Watanabe S (2001) Van Gogh, Chagall and pigeons. Animal Cognition 4:147–
151



The Origins of Art and the Art Instinct



The Art Instinct

 Stephen Jay Gould claimed that art is a 
“spandrel,” a nonadaptive side effect 
leveraging excess cognitive resources.

 Steven Pinker (1994) has put forward the 
theory there is a “language instinct”, and that 
it developed when fluency became a mate 
selection marker.

Pinker, S. (1994). The language instinct (1st ed.). New York, NY: W. Morrow 
and Co.



The Art Instinct

 Dutton (2009) speculates there is an “art 
instinct” that similarly developed when the 
creation of aesthetic objects became a mate 
selection marker. 

 Such a behavior provides evidence of an 
excess of material means.

It is suggested that this is behind the practice of men bringing women 
flowers, jewelry, etc.

*Impractical* gifts are the most romantic of all...and best evidence of 
material wealth.

Dutton, D. (2009). The art instinct : beauty, pleasure, & human evolution (1st 
U.S. ed.). New York: Bloomsbury Press.



The Art Instinct

 often requires rare or expensive materials.
 requires time for learning and making.
 requires intelligence and creativity.
 typically has a lack of utility.
 sometimes has an ephemeral nature.

Note that art:

Every culture has art, music, dance, story telling, etc.
That suggests, but doesn’t prove, that there is some instinctual force behind 
it.



The Art Instinct

 open green spaces with trees. 
 ample bodies of water near by.
 an unimpeded view of the horizon.
 animal life.
 a diversity of flowering and fruiting plants.

Dutton also speculates about the near universal 
preference for landscape pictures rich with 
survival cues from the African savannah:



The Art Instinct

Alexander Melamid: “...this blue landscape is more 
serious than we first believed...almost everyone 
you talk to...and we’ve already talked to hundreds 
of people...they have this blue landscape in their 
head...maybe the blue landscape is genetically 
imprinted in us, that it’s the paradise within, that we 
came from the blue landscape and we want it... 
China, Kenya, Iceland, and so on...the results are 
strikingly similar” 

Remember,  Melamid is one of the artists behind the “America’s most 
wanted” painting and project.

My comment - this isn’t hard science...but it sure is interesting.



Psychological Models of Human Aesthetics



Rudolf Arnheim “Art and Visual Perception” 

• Established Gestalt principles in 
aesthetics

• Perception is active cognition, not 
passive

• Law of Prägnanz - The brain orders 
experience into wholes that maximize 
clarity of structure

• Vague on the neurological specifics, but 
embraced the physical nature of his 
“forces and fields” in the brain

Arnheim, R. (1974). Art and visual perception: a psychology of the creative 
eye (New, expanded and revised ed.). Berkeley: University of California 
Press.



Gestalt Defined

 Grouping
 Containment
 Repetition 

 Proximity 
 Continuity 
 Closure

In perceptual psychology Gestalt refers to the way 
variety is structured into unity, combining individual 
cues into holistic form. For an assessment of 
balance it may be these holistic forms rather than 
the individual cues that have to be considered



Gestalt - Grouping

Creating sets of objects based on location, orientation, shape, etc.

Various attributes can group 
objects.



Gestalt - Grouping
Creating sets of objects based on location, orientation, shape, etc.

Without color the objects tend to group by 
shape.



Gestalt - Grouping
Creating sets of objects based on location, orientation, shape, etc.

With color your attention can shift from color to color creating groups of 
objects.



Gestalt - Containment

Creating sets of objects based on borders

Here the objects group by color or not at 
all.



Gestalt - Containment

Creating sets of objects based on borders

But borders decisively redefine the 
groups.



Gestalt - Repetition

Creating sets of objects based on serial instantiation of a concept

Note how alignment, spacing, color, and abstract notion of simple geometric 
shapes establish repetition.



Gestalt - Proximity and Fusion

The red and blue ovals group together, the yellow circles fuse

Proximity can group objects and overlap can fuse 
them.



Gestalt - Closure

The creation of apparent shapes despite missing information

We tend to see shapes even if they are not entirely enclosed. Our cognitive 
perception “fills in” missing information.



Gestalt - Continuity

Implied motion guides the eye and fuses objects

Our cognitive perception will also follow motion cues and unify otherwise 
separate objects.

Again:    Arnheim showed us that perception is cognition.



Daniel Berlyne “Arousal Potential”  

• Arousal potential is the capacity a 
stimulus has to arouse the nervous 
system. Berlyne noted three types:
• Psychophysical properties (e.g. loud 

sounds)
• Ecological (e.g. pain or predator 

sightings)
• Collative (e.g. surprise, complexity, 

ambiguity)

Berlyne was particularly interested in collative effects that bring together 
experiences in a comparative manner.  

He noted explicitly the correspondence between collative effects and 
notions of surprise and novelty in information theory.

Berlyne, D. E. (1960). Conflict, arousal, and curiosity. New York,: McGraw-Hill.
Berlyne, D. E. (1971). Aesthetics and psychobiology. New York,: Appleton-

Century-Crofts.



Daniel Berlyne “Arousal Potential”  

Berlyne was particularly interested in collative effects that bring together 
experiences in a comparative manner.  

He noted explicitly the correspondence between collative effects and 
notions of surprise and novelty in information theory.

Neurological activation of the reward and aversion systems combine to 
produce a positive or negative hedonic response.



Daniel Berlyne “Arousal Potential”  

C
om
pl
ex
ity

Disorder
Incompressibility

Order
Compressibility

Information and
Algorithmic Complexity

Despite his interest in information theory and related notions of 
complexity, his proposed hedonic response to arousal potential is not 
proportional to the amount of information carried.

Put another way, Berlyne’s notion of complexity is not proportional to 
positive aesthetic response.



Daniel Berlyne “Arousal Potential”  

E!ective Complexity

C
om
pl
ex
ity

Disorder
Incompressibility

Order
Compressibility

biological life

crystals atmospheric gas

Effective complexity is roughly proportional to Berlyne’s hedonic response 
curve.
Might this be a clue that our aesthetic response is tuned to effective 
complexity?
In other words tuned to the complexity of the biological world?
See the following for my formulation of this:

Galanter, P. (2012 in press). Computational Aesthetic Evaluation: Past and 
Future. In J. McCormack & M. d'Inverno (Eds.), Computers and Creativity. 
Berlin: Springer.

Galanter, P. (2010). Complexity, Neuroaesthetics, and Computational 
Aesthetic Evaluation. Paper presented at the International Conference on 
Generative Art, Milan, Italy.



Colin Martindale “Prototypicality” 

• Conducted a series of confirmatory 
experiments that, in fact, produced data 
contradicting Berlyne’s model.

• Developed a neural network theory that 
better predicted and explained the 
experimental data.

• Tends to speak about aesthetic 
preferences more than aesthetic pleasure.

Martindale, C., Moore, K. and Borkum, J. (1990). Aesthetic preference: 
Anomalous findings for berlyne’s psychobiological theory, The American 
Journal of Psychology 103(1): 53–80.

Martindale, C. (1991). Cognitive psychology : a neural-network approach, Brooks/
Cole Publishing Company, Pacific Grove, California.

Martindale, C. (2007). A neural-network theory of beauty, in C. Martindale, P. 
Locher and V. Petrov (eds), Evolutionary and neurocognitive approaches to 
aesthetics, creativity, and the arts, Bay- wood, Amityville, N.Y., pp. 181–194.



Colin Martindale “Prototypicality” 

• The nervous system is arranged hierarchically.
• Low level neural processing tends to be ignored.
•Higher levels of cognition, deeper semantic nodes, dominate.
•Nodes are excitatory upward and inhibitory laterally.
•So similar nodes are physically closer than others.
• This creates semantic fields that exhibit prototypicality.  

the nervous system is more strongly activated when 
presented with a stimulus that is typical of its class.

According to Martindale’s model regarding aesthetic preference...



Colin Martindale “Prototypicality” 

Problems with prototypicality:

• It doesn’t seem to fully address our attraction to novelty.  
(Meaning novelty other than incremental peak-shift 
phenomena).
•More generally it seems to ignore the careful balance of 

order and disorder, of expectation and surprise, in the 
arts.
•The linkage to aesthetic pleasure seems tenuous.

See Martindale’s “the clockwork muse” for a more developed theory of 
stylistic change in the arts.

Martindale, C. (1990). The clockwork muse : the predictability of artistic 
change. New York, N.Y.: BasicBooks.



Empirical Studies of Human Aesthetics



Empirical Studies of Human Aesthetics

Ernest Rutherford (likely paraphrased) 

“In science there is only physics.
Everything else is stamp collecting.” 

In the past couple of decades activity in the area of empirical studies of 
human aesthetics has been on the increase. 

Such studies are difficult because of the complexity of human perception 
and cognition, the challenges in using human subjects, the limited 
sample sizes, the need to control all manner of experiential and 
context variables, etc.

And then taking these highly individual results and trying to find a unifying 
theory or model is even more difficult.

But the individual “stamps” collected are intriguing nevertheless.



Studies of Viewers and Settings

 Subjects first asked to think about the distant future are 
more likely to accept unconventional works as art than 
those who first think about their near future.

 The same music will be evaluated more positively if 
preceded by bad music, and less positively if preceded 
by good music. 

 The presence or lack of title labels has no effect on the 
aesthetic evaluation of paintings. Similarly the amount of 
viewing time has no effect.

Schimmel, K. and J. Forster, How temporal distance changes novices' 
attitudes towards unconventional arts. Psychology of Aesthetics, Creativity, 
and the Arts, 2008. 2(1): p. 53-60.

Parker, S., et al., Positive and negative hedonic contrast with musical stimuli. 
Psychology of Aesthetics, Creativity, and the Arts, 2008. 2(3): p. 171-174.

Smith, L.F., et al., Effects Of Time And Information On Perception Of Art*. 
Empirical Studies of the Arts, 2006. 24(2): p. 229-242.



Studies of Viewers and Emotions

 Not all emotions lend themselves to musical expression. 
Those that do tend to be general, mood based, and don’t 
require causal understanding.

 Subjects with high scores when evaluated for right-wing 
authoritarianism are more likely to be angered and 
disgusted by controversial art photography. 

 The most genuine musically induced emotions are thrills, 
a sense of being moved, and especially aesthetic awe.

Collier , G.L., Why Does Music Express Only Some Emotions? A Test Of A 
Philosophical Theory. Empirical Studies of the Arts, 2002. 20(1): p. 21-31.

Cooper, J.M. and P.J. Silvia Opposing Art: Rejection As An Action Tendency Of 
Hostile Aesthetic Emotions. Empirical Studies of the Arts, 2009. 27(1): p. 
109-126.

Koneni, V.J., Does music induce emotion? A theoretical and methodological 
analysis. Psychology of Aesthetics, Creativity, and the Arts, 2008. 2(2): p. 
115-129.



Studies of Viewers and Neurology

 It was concluded that descriptive symmetry judgment and 
evaluative aesthetic judgment processes differ dramatically 
and recruit, at least in part, different neural machinery.

 The right visual field preference was found to apply only to 
abstract art.

 A model where the perceived color of an area is influenced 
by the surrounding colors is proposed. It is based on double 
opponent cells responding preferentially to one of the 
opponent colors, blue, yellow, red, and green.

Jacobsen , T., & Höfel, L. (2001). Aesthetics Electrified: An Analysis Of 
Descriptive Symmetry And Evaluative Aesthetic Judgment Processes Using 
Event-Related Brain Potentials. Empirical Studies of the Arts, 19(2), 14.

Coney , J. and C. Bruce Hemispheric Processes In The Perception Of Art. 
Empirical Studies of the Arts, 2004. 22(2): p. 181-200.

Katz, B.F., Color Contrast And Color Preference. Empirical Studies of the 
Arts, 1999. 17(1): p. 1-24.



Studies of Viewers and Types

 Open participants prefer more forms of art. This difference 
increases as the art became more abstract. Those with 
attitudes more tolerant of political liberalism and drug use 
prefer abstract art the most.

 Altruists reject aggressive images, and there is attraction 
for such images in aggressive types. The latter, however, 
have a greater liking for incongruous images that more 
indirectly and symbolically correspond to destructive drives.

Feist , G.J. and T.R. Brady Openness To Experience, Non-Conformity, And The 
Preference For Abstract Art. Empirical Studies of the Arts, 2004. 22(1): p. 
77-89.

Giannini, A.M. and P. Bonaiuto, Special Image Contents, Personality Features, 
And Aesthetic Preferences. Empirical Studies of the Arts, 2003. 21(2): p. 
143-154.



Studies of Artists

 Artists and non-artists were presented with 22 work-in-
process images leading to Matisse’s 1935 painting Large 
Reclining Nude. Non-artists judged the painting as getting 
worse over time with increasing abstraction. Art students 
showed a jagged trajectory with several peaks suggesting 
an interactive hypothesis-testing process 

 Balance influences the way adults trained in the visual arts 
create visual displays.

 Image making is consistent with personality test results.

Kozbelt, A., Dynamic Evaluation Of Matisse’s 1935 Large Reclining Nude. 
Empirical Studies of the Arts, 2006. 24(2): p. 119-137.

Locher, P., et al., Artists’ Use Of Compositional Balance For Creating Visual 
Displays. Empirical Studies of the Arts, 2001. 19(2): p. 213-227.

Machotka, P., Artistic Styles And Personalities: A Close View And A More 
Distant View. Empirical Studies of the Arts, 2006. 24(1): p. 71-80.



Studies of Objects

 The selection of a color palette, and the spatial control of 
color within a composition, results in the colorimetric 
barycenter of a painting being close to the geometric center 
in both representational and abstract paintings.

 Stimuli like horizontal and vertical lines, which are 
preferentially processed by the visual system, are also 
aesthetically more powerful.

 Removing color from portraits increased pleasantness and 
beauty and reduced tension. Removing color from 
landscapes reduced their perceived beauty.

Firstov, V., et al., The Colorimetric Barycenter Of Paintings. Empirical Studies 
of the Arts, 2007. 25(2): p. 209-217.

Latto, R. and K. Russell-Duff, An Oblique Effect In The Selection Of Line 
Orientation By Twentieth Century Painters. Empirical Studies of the Arts, 
2002. 20(1): p. 49-60.

Polzella, D.J., S.H. Hammar, and C.W. Hinkle, The Effect Of Color On 
Viewers’ Ratings Of Paintings. Empirical Studies of the Arts, 2005. 23(2): p. 
153-163.



Studies of Objects

 In film awards winning best song has no relation to film 
success, but winning best score is positively associated 
with the film success as measured by best-picture 
nominations and awards.

 There is some support for the idea that meaning attributed 
to single musical intervals may be a universal human trait. 
Specifically, Norwegian participants reported emotions that 
were remarkably consistent with the emotions reported for 
the very different musical tradition of medieval classical 
Indian raga music.

Simonton, D.K., Film music: Are award-winning scores and songs heard in 
successful motion pictures? Psychology of Aesthetics, Creativity, and the 
Arts, 2007. 1(2): p. 53-60.

Oelmann, H. and B. Laeng, The emotional meaning of harmonic intervals. 
Cognitive Processing, 2009. 10(2): p. 113-131.



Neuroaesthetics and Connectionist Computing

Here are some “light” and speculative suggestions as to additional future 
directions



Neuroaesthetics

 Neuroaesthetics is a nascent bottom up 
scientific study of aesthetic perception that 
begins at the level of the neuron and 
neurology.

 It is made possible in part thanks to brain 
imaging technologies such as fMRI, PET, and 
fNIR.

functional magnetic resonance imaging (fMRI)
positron emission tomography scanning (PET)
functional near-infrared imaging (fNIR)

But would a heat map movie of a CPU allow us to infer much about the 
algorithm being executed?



Neuroaesthetics example

Peak Shift

for a given stimulus a 
“super-stimulus” will 
generate an 
exaggerated response.

In the Herring Gull the red spot on the beak of the parent acts as a stimulus 
causing the chicks to peck at it, and that in turn stimulates feeding behavior 
by the adult.

Oddly, the herring gull chicks will also peck at any red dots, such as those 
painted on a stick, and a greater number of red dots will stimulate a 
stronger pecking response.

This kind of behavior has been posited as a neurological precursor to 
caricature and other artistic techniques which exaggerate visual features.



Neuroaesthetics example

Habituation

repeated exposure to 
the same stimulus, 
especially without 
recovery time, lessens 
the perceived intensity.

The combined effects of peak shift and habituation have been suggested as a 
neurological engine behind the tendency in art to move to increasingly 
extreme styles over time.

See Martindale’s “the clockwork muse” for a more developed theory of 
stylistic change in the arts.

Martindale, C. (1990). The clockwork muse : the predictability of artistic 
change. New York, N.Y.: BasicBooks.



Heirarchical Temporal Memory

 HTM is essentially a neural network design 
invented by Jeff Hawkins inspired by his model 
of the neocortex’s operation.

 The model suggests a hierarchical associative 
memory system that exploits the passage of 
time creating local prediction feedback loops 
for constant training.

for all manner of higher brain function including perception, language, 
creativity...
lower levels aggregate inputs and pass the results up to higher levels of 
abstraction 
Neurologists know that the neocortex consists of a repeating structure of 
six layers of cells. 
Hawkins suggests within a given level higher layers constantly make local 
predictions as to what the next signals passed upward will be. 
Correct predictions strengthen connections within that level. 

Hawkins, J. and Blakeslee, S. (2004). On intelligence, 1st edn, Times Books, 
New York.



Evolvable Hardware

 Evolvable hardware exploits firmware as 
genotype using devices such as field 
programmable gate arrays (FPGAs).

 The system behavior is the phenotype, and 
given an appropriate fitness function such a 
system can exhibit emergent learning.



Evolvable Hardware

 Glette et al (2007) described a proposed 
evolvable hardware system simulated in 
software. Used as a pattern recognition 
system for facial recognition it achieved an 
experimental accuracy of 96.25%.

Glette, K., Torresen, J., & Yasunaga, M. (2007). An Online EHW Pattern 
Recognition System Applied to Face Image Recognition Applications of 
Evolutionary Computing (pp. 271-280): Springer.



Conclusion



Concluding Summary

 To build truly creative systems we not only need 
generative systems, we also need systems capable of 
critical judgement.

 We don't know yet how to build robust CAE systems 
although there have been some notable niche 
applications of merit.

 Emergent machine aesthetics are interesting in their own 
right, but to date emergent aesthetics have not been 
effective in simulating predicting or catering to human 
notions of beauty and taste.



 It seems unlikely that simple formulaic or geometric 
theories will yield robust CAE.

 Traditional design theory might be of help if we can build 
computer vision systems capable of high level semantic 
abstraction.

 Would-be creative evolutionary systems suffer from the 
lack of CAE in the form of lack of automated fitness 
functions.

Concluding Summary



 CAE systems that seem to be mathematical or 
algorithmic are typically built on a foundation of 
neurological assumptions or models. We need better 
cognitive models of aesthetics.

 While "complexity" is often cited as an important variable 
in CAE, there are differing views as to how complexity 
should be conceptualized, defined, and operationally 
measured.

Concluding Summary



 Solving the CAE puzzle seems to be a long way off, but 
the solution may turn out to be the result of 
breakthroughs in cognitive science, connectionist 
computing, and hardware design.

Concluding Summary



Philip Galanter
Department of  Visualization

Texas A&M University
galanter@viz.tamu.edu
http://philipgalanter.com

Computational Aesthetic Evaluation
steps towards machine creativity


