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Abstract

After a great deal of initial promise and enthusiasm, evolutionary art seems to have 
hit a premature and disappointing plateau.  This paper proposes a difficult but 
necessary program for the advancement of evolutionary art. 

First two significant problems are discussed.  The first is the problem of creating 
aesthetic fitness functions that would allow evolutionary art systems to execute 
unattended with industrial sized populations and generations.  In this context a quick 
survey of computational aesthetic evaluation is offered. Then it is suggested that 
progress in perceptual psychology and neuroaesthetics, coupled with advancements 
in connectionist computing, may provides new techniques for scoring aesthetic 
fitness. 

The second problem is the sense of “sameness” and lack of innovation exhibited by 
typical evolutionary art systems.  In this regard the related technical problem of 
genetic representation is noted, various types of genetic representation are 
reviewed, and a critique is offered relative to evolution in nature.  It is noted that 
evolution in exercises multiple levels of complexification and emergence.

Finally an implication for generative art aesthetics and theory is discussed.  It is 
suggested that current evolutionary art systems and projects are incoherent in so far 
as they don’t focus on the essential virtue of generative art, i.e. a focus on process 
rather than final form.  It is suggested that the general shift from nouns to verbs that 
is essential to generative art should be pushed to the fore.  An aesthetic of truth to 
process and dynamism is proposed as foundational for evolutionary art.

1.  Introduction

Although computational evolutionary art has been an active practice for at least 20 
years [1] there is a vague feeling of disappointment with the present state of the art. 
Industrial applications of evolutionary methods such as genetic algorithms have 
tracked the general progress seen in other sectors of computation and technology.  
But evolutionary art seems to have reached a premature plateau. Improvements in 
the aesthetics of evolutionary art have been slow, and any headway has frequently 
been by way of narrow techniques that are not generalizable or extensible.
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In terms of technology there are two significant challenges, the problem of aesthetic 
fitness functions and the problem of genetic representation.  But there are also 
related aesthetic and art-theoretical issues that must be faced as well.

2.  Fitness Functions for Art

In industrial applications such as automotive design, electronics, routing optimization, 
investment, chemical process engineering and so on evolutionary techniques have 
yielded significant value.  A common element is that an a priori fitness function can 
be defined and applied as part of the iterative algorithm.  And so fitness scores can 
be automatically calculated for each candidate solution. [2]

This allows evolutionary systems to run hundreds or thousands of generations with 
very large populations.  And once the system begins it can run for as long as 
necessary without human intervention.

Artists face a difficult problem in this regard.  How does one define and implement an 
aesthetic fitness function?  Various theories proposing a formulaic approach to 
aesthetic evaluation have come and gone over the years without much success.  
Some are skeptical as to whether aesthetics can ever be systematized for human 
understanding let alone computer implementation.

The typical response is to keep the artist “in the loop.”  The artist manually assigns 
fitness scores as each new generation is created.  This approach is usually called 
“interactive evolutionary computing” or IEC. 

Lewis has cataloged a large number of evolutionary art projects with nearly 200 
citations. Most of those systems by far are interactive and use some form of case-by-
case human judgment to provide fitness scores. [3] This is sometimes called “the 
fitness bottleneck” because the artist, usually by orders of magnitude, cannot 
evaluate populations as quickly as the computer can generate them.  An additional 
problem is that the artist’s judgment will become inconsistent due to fatigue and 
boredom.  The result is that compared to industrial applications evolutionary art 
systems typically suffer from small populations and few generations. 

To overcome these fatigue and bottleneck problems Drave’s Electric Sheep system 
accepts evaluation information from the users of the thousands of computers 
displaying the results as a screen saver. [4] Earlier Sim’s Galapagos system used 
the amount of time an observer would spend looking at a given image as a fitness 
function.  While such systems overcome the fitness bottleneck to some extent, the 
long term aesthetic utility of this approach is open to question.  As both 
demonstrated and satirized by Komar and Melamid, aesthetics derived from polling 
leads to the unremarkable and mediocre. [5]

2.1  Computational Aesthetic Evaluation

When it comes to IEC one is reminded of the Mechanical Turk.  In the 18th century 
this was described as a machine that could play chess. [6] In reality the Mechanical 
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Turk was more like stage magic than computation. Despite making a great show of 
revealing the see-thru machinery supposedly involved, in reality a human operator 
was hidden inside the cabinet. This operator made all the decisions and won or lost 
the game.  And in an interactive evolutionary computing system there is a hidden 
artist making all the decisions and winning or losing the aesthetic game.

From one point of view the challenge of computational aesthetic evaluation (CAE) is 
to create aesthetic fitness functions that can solve the problems presented by IEC.  If 
human evaluation could be eliminated evolutionary art could benefit from the large 
populations and multiplicity of generations enjoyed by industrial applications.

So far though, computational aesthetic evaluation remains a grand challenge-level 
problem.  For example, attempts to partially solve this problem have been made by 
Sanders and Gero [7] and Greenfield [8] using agent-based systems; Jaskowski et al 
[9], Fornari et al [10], and Ciesielski et al [11] using error measurement relative to an 
exemplar; McDermott et al [12] similarly using perceptual measures, spectral 
analysis, and low-level comparison to sound targets; and Khalifa and Foster [13]
using music theory-based rules. 

Various numeric measures as aesthetic indicators have been explored such as Zipf’s 
law (Manaris et al [14]), fractal dimension (Mori et al [15] and Taylor [16]), and 
various complexity measures (Birkhoff [17], Machado and Cardoso [18]).

Attempts to use connectionist models such as neural networks in computational 
aesthetic evaluation include Machado et al [19], Phon-Amnuaisuk et al [20], and 
Gedeon [21].

Some researchers have tried to deal with the fatigue problem by only using human 
evaluation for a subset of the population.  The scores are then leveraged across the 
entire population based on similarities in the population. Takagi offers a broad 
overview of attempts to fuse evolutionary computing and interactive evolution 
computing.  He includes both art systems as well as other applications up to 2001 
with over 250 citations. [22] More recent reports on hybrid systems for evolutionary 
art include Yuan and Gong [23], Pallez, Machado et al [24], and Machwe and 
Parmee [25].

2.2  Connectionism and the Psychology and Neurology of Aesthetics

Despite the above efforts computational aesthetic evaluation remains an unsolved 
problem. This shouldn’t be terribly surprising because we don’t know much about 
how human aesthetic evaluation works either. And this may be a hint as to where 
future progress will be found.  

Significant research is underway by experimental psychologists as reported in 
journals such as Psychology of Aesthetics, Creativity, and the Arts, Empirical Studies 
of the Arts, and the Journal of Consciousness Studies. A picture of how human 
aesthetics works is being assembled piece by piece from the point of view of 
experimental psychology. 
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A new addition to such research is the nascent field of neuroaesthetics. 
Neuroaesthetics is the scientific study of the neurological bases for the creation, 
experience, and contemplation of works of art.   An example of such work is a recent 
chapter by Martindale where he proposes a general neural network model of 
aesthetic perception.  In support of this model he cites the compatible results of 25 
empirical studies of aesthetic perception. [26]

It’s important to note that Martindale’s model is theoretical and has not been 
implemented as a computational neural network.  But this kind of work may give 
others ideas and incentive for doing so. As an example of connectionist computing 
inspired by neurological theory, Hawkins has introduced a new connectionist design 
he calls “hierarchical temporal memory” (HTM) based on a theory of the neocortex. 
[27]

The human brain has about 100 billion (1011) neurons each with about 10 thousand 
(104) synaptic connections. In addition there are about 900 billion glial cells in the 
brain.  At one time these cells were thought to be relatively passive.  Current 
thinking, however, is that glial cells also actively process information.  Given there 
are upwards of 1015 connections it seems unlikely digital technology will be able to 
duplicate the mechanics of the brain any time soon.

In this regard it’s worth noting that some evolutionary psychologists have 
hypothesized that our aesthetic capabilities arise from adaptations related to mate 
selection.  In addition, animals with much simpler neurology seem to select mates 
based on a simple kind of aesthetic evaluation.  It may be that computation orders of 
magnitude less than that exhibited by the human brain will be up to the task.

So perhaps breakthroughs in both the neurology of aesthetics and connectionist 
computing will synergistically lead to breakthroughs in computational aesthetic 
evaluation. 

3.  Aesthetic Sameness and Genetic Representation

The second major technical problem is that of genetic representation.  This problem 
exhibits two related symptoms in evolutionary art.  Frequently work from a given 
evolutionary systems displays a certain sameness or cast that many find 
disappointing.  And as a corollary a given evolutionary system typically will not shift 
paradigms or otherwise innovate in significant ways.  

To be sure such systems can assist in the discovery of surprises, but crossing 
genres rarely happens if at all.  Innovation at the level of a Picasso transitioning from 
his Blue Period through the Rose, African, and then Cubist periods is not something 
we see given the current state of evolutionary art technology.  Note that this is not an
observation about a lack of quality, although there is that as well, but rather a 
statement about the inability of evolutionary art systems to significantly break 
aesthetic paradigms at any level of quality.

In nature complexity at higher scales is an emergent property of self-organization at 
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lower scales.  This process has been called by some “complexification.” [28] The 
problem of aesthetic sameness and lack of innovation is due, at least in part, to the 
lack of complexification capacity found in most evolutionary art systems.  

Artists typically have a vague to specific notion of what the desired result is, and then 
designs an evolutionary system to explore that aesthetic space.  In doing so the 
design of the genetic representation is of meta-significance because it will constrain 
the space of all possible evolutionary paths. 

There are at least four kinds of genetic representation and each allows for a greater 
or lesser degree of complexification.

Fixed parameters offer the simplest kind of genetic representation. For example, in 
a system for creating drawings of insects there would be a gene for head size, 
another for body color, another for leg length, and so on. Such a system will always 
draw six legs, and so it will never draw a spider.  A fixed parametric evolutionary 
system is highly constrained.

Extensible parameters offer a slightly more complicated representation. In an insect
drawing system an arbitrary number of leg genes would be allowed, and so spiders 
and even centipedes could be drawn.  But without wing or fin genes the system will 
never draw birds or fish.  And so an extensible parametric system is still tightly 
constrained.

Direct mechanical representations are more complicated, but allow for a significant 
increase in complexification.  A version for drawing insects would include genes that 
construct a (typically virtual) drawing machine as well as genes that instruct the 
drawing machine as to what marks to make.  In theory this kind of genetic 
representation can allow most any picture to be drawn.  And mutations in the genes 
that construct the drawing machine might, for example, turn pencil-like marks into 
brushed ink-like marks.  But the complexification such a system affords is still limited 
because the genetically constructed machines only exhibit a single level of 
emergence. 

Reproductive mechanical representations are those most like DNA as found in 
nature.  In such a system genes can construct machines that can go on to construct 
other machines and so on.  And indeed such machines may create copies of 
themselves, i.e. reproduce.  Such a system can induce an arbitrary number of levels 
of emergence across multiple scales.  This kind of genetic representation has the 
potential to provide complexification as found in nature. 

A quick review of complexification in nature is useful at this point.  (See figure 3.)  
According to current theories, shortly after the big bang matter self-organized as it 
settled into lower energy states resulting first in subatomic particles and then atoms.  
Hydrogen and helium atoms, in turn, diversified and gained mass through fusion 
within stars.  Self-organization then transitioned from the atomic level to the chemical 
level with the formation of molecules.  Some molecules increased their numbers 
more rapidly than others due to the appearance of yet other molecules acting as 
catalysts.  This process intensified when feedback loops of reactions that produced 
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their own catalysts appeared.  Some of these reactions complexified into networks of 
self-reinforcing catalytic reactions called “autocatalytic sets.” [29]

Figure 3

It is hypothesized that out of this sea of autocatalysis arose a primordial form of DNA 
that had the unique ability to reproduce itself in a way similar to autocatalysis despite 
the fact that its chemical structure wasn’t fixed.  As is now well-known DNA is, in 
part, made up of sequences of nucleotides that can vary in quantity and order.  This 
created the basis for an extremely robust system of complexification spanning many 
scales and requiring a number of levels of emergence. 

And so there is an upward increase of complexity as DNA creates proteins, proteins 
organize to create organelles, organelles organize to create cells, cells organize to 
create tissues, tissues organize to create organs, and organs organize resulting in 
creatures.  

At the level of DNA there is the unique ability to reproduce genes and then kick off a 
nearly identical sequence of emergence. This results in new living individuals 
inheriting, with perhaps a little variation, the complexity slowly built up over millions of 
years.  
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(It is beyond the scope of this paper to discuss, but it’s not until minds capable of 
symbolic understanding emerge that another mode of inheritance from individual to 
individual becomes possible.  This has suggested to some that evolutionary art 
systems should generate emergent individuals capable of further information 
exchange at a higher level). 

Like DNA, an evolutionary art system using reproductive mechanical genetic 
representations would allow for greater complexity because it would allow multiple 
levels of emergence across multiple scales. And perhaps then evolutionary art 
systems could then exhibit the wished for variety and innovation we find in nature. 

Unfortunately most evolutionary art systems currently utilize fixed or extensible 
parametric genetic representations, and a few arguably use direct mechanical 
representations.  The creation of evolutionary art systems that use reproductive 
mechanical representations remains an unsolved problem as a matter of technology. 
It also presents an interesting art theoretical problem.

4.  Dynamism and Truth to Process 

As should be clear from the previous section, evolution in nature is a bottom up 
process.  There are multiple levels of emergence at increasing scales.  And this has 
happened over millions of years due to iterative and immediate competition and
survival and not long term planning.

In short evolution is not teleological.  It does not set out to create an advanced 
creature and then project downward to determine what is needed at lower levels.  
For all their complexity creatures in the natural world are unplanned and 
unanticipated emergent properties resulting from many levels of bottom up 
complexification.

This is the opposite of how evolutionary art is typically created.  Generally the artist 
has some idea of approximately what the end product should be, and then he 
designs a system and genetic representation that will lead to the anticipated result.  
This usually involves at most a single level of emergence.  Simply as a practical 
matter this dooms the work to the sameness and systemic lack of innovation noted 
earlier.

Perhaps this is acceptable and even desired for certain kinds of generative art and 
design.  For example, if one is designing tables its not useful if the system suddenly 
starts offering lampshades, however surprising and innovative that may be.

But in the realm of fine art where innovation and conceptual focus are the hallmarks 
of truly great work, one has to ask whether the typical approach is not only practically 
insufficient but also art-theoretically incoherent.

In previous writing I’ve discussed generative art, and especially complexity-based 
generative art, as a move from art objects to art processes.  What is essential to 
generative art is not the final object.  There are many non-generative ways to create 
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objects too. The defining aspect of generative art is the way the artist cedes control 
to an autonomous system. [30, 31]

Previous art movements have promoted the notion of “truth to materials.”  In the 
context of formalism it was thought that the most powerful aesthetic would be the 
presentation of the essential nature of the medium.  That would deliver the purest 
distillation of significant form.  Applied to architecture this meant that concrete was 
presented as concrete, and steel beams were shown as steel beams.  For Clement 
Greenberg paintings as simulated windows into illusory space presented a weak 
formal aesthetic.  Only when the canvas was literally considered as a flat support for 
paint presented as paint could painting harness its true form and essential power.

In taking a top down rather than bottom up approach, current evolutionary art has 
turned the process of evolution upside down.  And the teleology that doesn’t exist in 
nature has been introduced in art that is supposed to be inspired by nature.  This is 
part of theoretical incoherence referred to previously.

What is essential to generative art is not any particular material but rather the 
harnessing of process.  At this point in art history a powerful aesthetic for generative 
art could be called “truth to process.”  

Evolutionary art created in the context of truth to process should be created from the 
bottom up. It should start with reproductive mechanical genetic representations. 
Gene expression should not directly create the object, but rather should kick off a 
process of complexification that crosses multiple scales and levels of emergence.  
This is currently a yet to be implemented lesson from nature.

Most importantly generative art in the spirit of “truth to process” should not obsess on 
formal issues surrounding the final object.  Formal aspects of the final object are 
important only in so far as they lead back to the processes that created them.  
Evolutionary art, and generative art in general, should give the audience a sense of 
dynamism and offer the generative system itself.  In the move from nouns to verbs 
generative art should embrace dynamism, the aesthetic of creation as an activity, 
and truth to process as intrinsically beautiful.
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