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Abstract

On September 26, 1999, a musical performance, taking place at McGill University, was
transmitted to an audience at New York University, over the Internet.  While Internet streaming
audio technologies have been in use for several years, what made this event unique was the
audience’s experience of uninterrupted, intermediate quality, multichannel audio (AC-3).  In
order to achieve this result, a custom system was developed employing both TCP and UDP
protocols, and providing its own buffering and retransmission algorithms.  The motivation for
this approach is explored, and experiments justifying the decisions made are explained.
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1 Introduction

The growth of the Internet has not only reshaped our work lives, but, in recent years, has also
begun to affect and redefine various areas of entertainment, in particular, that of music.  Until the
last decade, the idea of downloading music to one’s home, at great convenience and essentially
zero-cost, would have been unthinkable to many.  Today, real-time Internet music streaming,
such as that available from RealNetworks (realnetworks.com) and MP3 (mp3.com), is regularly
enjoyed by millions of listeners.

The limiting factor in such transmissions is typically the available bandwidth of the underlying
networks.  As a result, Internet audio streaming technologies are invariably characterized by
relatively low-bandwidth, low quality, stereo sound.  Although this may satisfy the minimal
requirements of casual audiences, it is by no means sufficient for a society of musicians and
professional audio engineers [1], to whom high-fidelity, multichannel audio is a necessity.
Fortunately, the recent emergence of advanced research networks provides an opportunity to
explore the possibilities of real-time streaming of high quality, high bandwidth, multichannel
audio over the Internet.

The remainder of this paper describes our efforts in designing such a system.  Using this
technology, we carried out two successful demonstrations, one for the 107th Audio Engineering
Society (AES) Convention in New York and the second for the 1999 Canarie Advanced
Networks Workshop in Toronto. Considering the emergence of megabit ADSL and cable-
modem links to the home, we note that these trials are not merely fanciful research experiments,
but rather, likely prototypes of the next generation of consumer entertainment delivery
mechanisms.

2 The Demonstrations

The first demonstration, on September 26, 1999, involved the transmission of AC-3 audio
accompanied by a separate MPEG-1 video stream, requiring a total bandwidth of approximately
3 Mbps.  A live performance of the McGill University Swing Band, playing at McGill's Redpath
Hall, was delivered to an audience at the Cantor Film Center of New York University, with a
time delay of approximately three seconds.1  The second demonstration, on November 28, 1999,
delivered from McGill University to the Metropolitan Toronto Convention Center, repeated the
setup used in New York, but decreased the time delay to approximately one second, thereby
illustrating the potential of the technology for reliable, real-time transmissions.  At the same
time, we generated an additional 12 Mbps of competing traffic between the two sites to test the
system’s robustness to congestion.

An additional experiment, employing six channels of uncompressed, linear coded audio, 24 bits
per sample at 96 kHz, could not be carried out due to hardware limitations, as discussed in
Section 2.1.2.

                                                
1 A highly conservative 15-second delay was employed during the first half of the performance, but this was later
reduced to three seconds as the authors attempted to demonstrate the importance of buffering.  However, due to its
robust retransmission algorithm, the system continued to deliver lossless audio, despite competing traffic on the
network, even as the accompanying MPEG-1 video stream (Cisco IP/TV) exhibited occasional dropped frames.
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2.1 Hardware Configuration

Having provided the background for this research, we now turn to a more detailed description of
the hardware involved in each of the experimental configurations.

2.1.1 AC-3 Compressed Audio Transmission
Figure 1 illustrates the experimental setup used in the AC-3 demonstration.  The performance at
McGill University was fed into a Sony PCM-800, which converted the six channels of analog
input to PCM at 16 bits per channel, 48 kHz, which were in turn provided to a Dolby DP569
encoder via three AES/EBU streams.  The resulting AC-3 data, encapsulated in an AES/EBU
stream at 1.536 Mbps, was read by the sender program running on a Silicon Graphics Indy
(R4600 with 64 Mbytes RAM).  The sender was responsible for segmenting the audio data into
discrete packets and transmitting them over the network, to another Indy R4600 with 150 Mbytes
RAM), located at the Cantor Film Center (or the Toronto Convention Center).  A receiver
program, running on this machine, read the packets from the network, extracted the audio data,
and provided it via the Indy’s AES/EBU port, to a Dolby DP562 decoder, which decompressed
the AC-3 data and delivered the audio to a playback system.

2.1.2 Uncompressed Audio Transmission
The setup for the uncompressed audio experiment called for the six channel audio sources to be
connected to A/D converters manufactured by Data Conversion Systems (dCS), whose outputs
are integrated by a prototype APX encoder unit.  The encoder packs the resulting audio stream
into a flexible data format, discussed in the following section, which is then read by the sender
program running under Linux on a Pentium III PC.

The hardware design used a high-speed parallel port connection to transfer uncompressed audio
data to and from the APX unit. Unfortunately, the transfer rates achieved with various parallel
port configurations was found to be substantially less than that advertised by manufacturers.  In
practice, parallel port I/O consumed all available clock cycles, leaving no time for the
transmission (or reception) of data through the network card, nor the servicing (or generation) of
retransmission requests.   A new version of this hardware, currently in development, will replace
the parallel port interface with a Firewire port, thereby allowing for lower I/O overhead.
Although hardware limitations have so far prevented us from demonstrating an end-to-end
system in operation, our network protocol achieved reasonable performance for the transport of
simulated uncompressed audio data between the two sites.2

The sender program is responsible for transmitting the data over the Internet to a receiver
program, running on an identical PC, where the audio data is extracted and delivered to an APX
decoder, which unpacks the data and passes the streams to D/A converters for playback.

                                                
2 It is our intention to carry out a demonstration of this system at the upcoming 109th AES convention.
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2.2 Audio and Video Format

The AC-3 audio data (encoded Dolby Digital 5.1) [2] is encapsulated in a stereo AES/EBU (48
kHz, 16 bit) stream provided by the Dolby Encoder.  AC-3 carries five full-range channels and
one subwoofer, but because of compression, does not require the full channel capacity3 of
AES/EBU. [3] While it is therefore possible to reduce bandwidth demands by discarding the
padded zeros of the AES/EBU stream, we chose not to do so, as our research goal involves
higher bandwidth applications, such as the transmission of uncompressed six-channel PCM data.

For transmission of uncompressed audio data, the APX encoder reads all six channels of data
from the A/D converters and packs them into custom data blocks, pictured in Figure 2.  Each
block includes 192 samples of the six-channel audio data, arranged in layers of successively
decreasing sample resolution.  In this manner, the first layer consists of the most significant bit of
each sample for each of the six channels.  This is then followed by the second layer, which
contains the next most significant bit of each sample, and so on. This layered coding is very
similar to the method of packetized voice, as specified by ITU-T G.764, designed for the
convenience of congestion control.  Further details concerning the effect of this layering on
system performance are discussed in sections 4.5 and section 5.4 of the paper.

In addition to the audio stream, we utilized Cisco's IP/TV system for the encoding, transmission,
and decoding of MPEG-1 video at approximately 1.5 Mbps and MPEG-2 video at approximately
3.0 Mbps4.  As IP/TV does not yet provide support for external synchronization, nor the transport
of high fidelity, multi-channel audio, the alignment of audio and video streams was performed
manually, immediately prior to the demonstrations.  It should be noted that MPEG-2 Advanced
Audio Coding (AAC) supports synchronized playback of multi-channel audio with greater
fidelity than AC-3 [4], but this format is not currently supported by IP/TV.

2.3 Network Route

For the first demonstration, the audio and video streams were transmitted over the high-
performance networks managed by Canarie (Canada) and Internet2 (US) corporations. The
network route used during this demonstration, along with the available bandwidth of each link,
as measured by pathchar5, is illustrated in Figure 3. For the second demonstration, the network
route was confined to that portion of the original path between Montreal and Toronto.

                                                
3 Dolby Digital encodes its data into frames, where each frame contains the audio for all coded channels over a time
interval of 1536 samples. As the AES3 carrier is a two-channel interface, it contains 3072 sample locations per
1536-sample time interval.  Dolby Digital encoders such as the DP569 generate an AES3 output such that the Dolby
Digital frames each begin on a 3072-sample boundary, with a burst duration dependant on the data rate. In the case
of a 448 kbps stream, the burst duration is 896 16-bit samples, plus a four-word preamble used to signal the type of
digital content being conveyed. The remaining samples are digital zeros. Thus, the stream uses only 448 kbps of the
total 1.536 Mbps capacity of the AES3 channel.

4 Due to limited processor resources at the time, we only utilized the MPEG-1 stream for these demonstrations.
5 Note that there has been considerable discussion as to the accuracy of measurements provided by this tool.
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Although these networks have relatively high capacity, there were several bottlenecks that
limited the available bandwidth. For an AC-3 audio stream, these bottlenecks may not appear
significant, as our bandwidth demands amounted to only a fraction of the available capacity.
However, transient network congestion induced by other high bandwidth applications would
prove fatal to a simple audio transmission protocol.  We were challenged to ensure robustness,
despite the lack of bandwidth guarantees and the unavailability of any bandwidth reservation
protocols on the network.  Just as on a public Internet, we had to compete with all other traffic,
while ensuring the delivery of our AC-3 audio stream.

3 The Audio Transmission System

The design of our transmission protocol was the most critical component of the system.  Since
the audio data was to be streamed and played back in real time, the protocol had to ensure
delivery of data to the receiver with low latency, low error and loss rate, and most importantly,
without breaks in continuity.  It is this final point that ultimately determined the success of the
demonstration, as any interruption of the output stream would cause an immediately noticeable
break in the music.

Our design was based in part on the Adaptive File Distribution System (AFDP) [5], which
provides efficient and reliable delivery of a file to multiple hosts on an Internet.  The
fundamental difference between AFDP and our application is that the former is not bound by
real-time constraints.  For a streaming audio application, we are willing to trade a small amount
of reliability in exchange for real-time performance.

3.1 Transmission Protocol

TCP [6] and UDP [7] are the dominant network protocols used for computer communication.
TCP, a connection-oriented, reliable, and full-duplex protocol, uses an acknowledgement and
retransmission scheme to guarantee delivery of data.  If a segment is not acknowledged by the
receiver, the sender will continue to retransmit until the data is received successfully.
Furthermore, TCP ensures an ordered reception of packets by delivering packet pn only after all
previous packets, pi, i < n, have been received.

While these mechanisms are well suited to applications such as ftp, telnet, and http, they are
unsuitable for the transmission of real-time media.  This unsuitability is related to the
characteristics of Internet communication, typified by widely fluctuating transmission delays.
For example, although the average round trip time (RTT) for data sent between McGill and NYU
was in the order of 50 ms, it was not unusual to observe RTTs of several hundred milliseconds
during periods of high network traffic.  Such delays can cause TCP to activate its congestion
avoidance mechanism [8][9] or lead to timeouts at the sender, substantially degrading
performance [9][10].

From the perspective of someone listening to an audio broadcast, if one packet fails to arrive
before its audio content is scheduled to be played, it is imperative that successive packets are not
delayed unnecessarily, otherwise, a discernable break in the music will occur.
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For these reasons, real-time applications tend to favor UDP, a connectionless, unreliable protocol
with no flow control mechanism.  However, UDP by itself is clearly insufficient, and must be
supplemented by additional protocol layers to ensure efficient and robust delivery of data.

RTP (real-time transport protocol) [11] provides end-to-end network transport functions suitable
for applications transmitting real-time data such as audio and video over multicast or unicast
network services. Its specification states that "RTP is intended to be malleable to provide the
information required by a particular application and will often be integrated into the application
processing rather than being implemented as a separate layer.”  In fact, applications typically
run RTP on top of UDP [12].  As time was limited, rather than implement the entire RTP
specification in our prototype, we opted to develop a lightweight version, tailored for our reliable
unicasting needs. Our implementation includes most of RTP’s basic services, including payload
type identification, sequence numbering, timestamping and delivery monitoring.

RTCP (real time control protocol) [10] is an accompanying protocol of RTP designed to
exchange control information related to real time data transmission.  Either UDP or TCP can be
used as the underlying transmission protocol, depending on the requirements of the application.
Since RTCP was designed with large-scale multimedia applications in mind, the protocol offers
considerable control information that is not required for our purposes.  Furthermore, our
application cannot afford the loss of any control information (i.e. NACK packets) if it is to
ensure uninterrupted audio delivery, so a TCP connection for control packets is necessary.  In
order to implement an effective control mechanism within short time constraints, we chose to
develop our system based on the lightweight AFDP protocol [5].  For future work, it may be
useful to incorporate RTCP support as a standard.

3.2 Program Overview

Figure 4 presents the structure of the sender and receiver programs and illustrates the interactions
between them.  The main program structures are the same for both the AC-3 and uncompressed
versions of the program.  At each host, three network sockets are created for communication
between the two programs:

1. A TCP connection initiated by the receiver, used to request transmission of audio data from
the sender.

2. A UDP channel, used for the transmission and retransmission of the audio data.

3. A TCP connection initiated by the receiver, used for the exchange of control packets between
the two programs and for the occasional retransmission of missing audio data, as will be
explained below.

The sender process maintains an audio queue containing pointers to the data packets being
transmitted.  This process has two threads.  One thread continuously reads the output of the audio
encoder, stores this data in packets, and adds them to the audio queue.  The second thread is
responsible for the transmission and retransmission of audio data to the receiver.

The receiver process consists of a single thread, which continuously checks the UDP and TCP
sockets for incoming data and stores these received packets in an audio queue.  At every iteration
through the loop, a periodic timer is checked.  Whenever the timer expires, audio data is
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dequeued and sent to the playback device and the remainder of the queue is checked for missing
data.  If necessary, a retransmission request is then issued to the sender.

All the data transmission by our system takes place in the form of user-defined data and control
packets.  Data packets, normally sent by UDP, except during retransmissions, consist of an
identifying header and a payload, which carries audio data.  The identifying header includes
sequence number, timestamp and the payload data type.  It also includes the most recent average
transmission rate at the sender.  This can be used by the receiver to estimate the current network
congestion. Control packets, sent by TCP to provide guaranteed delivery, are used primarily for
retransmission requests and exchanging monitoring information between the sender and receiver.

3.3 Data Buffering

As discussed in the following sections, retransmission is used for the recovery of lost packets as
needed to ensure reliable end-to-end transport.   This requires that audio data be buffered at both
the sender and the receiver.  Both ends maintain the audio data in a ring buffer, implemented as a
linear array of pointers to the data packets, in order to allow direct access to the corresponding
data segments.

As each block of audio is read at the source, the sender stores this data in a new packet and
inserts a pointer to it into the appropriate cell, indexed by sequence number.  When the head of
the ring buffer reaches the tail, the oldest audio packets are freed, leaving space for newly
acquired data.  In this manner, the send buffer is always kept full, allowing for a maximal
retransmission window, apart from a short period at the beginning of the program.

At the receiver, the incoming data packets are saved and a pointer to each is added to the buffer
in a cell determined by the packet’s sequence number. Once the number of data packets stored
inside the buffer reaches the playing threshold, this data is dequeued and sent to the playback
device.  At this point, a periodic timer is started, and on each expiration of the timer, the oldest
packets are dequeued from the ring buffer and played.  For a lossless network, the receiving rate
should be equal to the playback rate and hence, the number of packets in the receive buffer
would be constant.  However, in the real world, the receive buffer fluctuates because of packet
loss caused by network congestion.

4 Packet Recovery and Congestion Control Mechanisms

Since packet loss is inevitable, we require a lightweight recovery protocol in our program.  This
protocol must be reliable, subject to best-effort limitations, and fast, such that the receiver
recovers the missing data in time for playback. Our ability to satisfy these demands is determined
jointly by the network architecture, link capacity, competing traffic, and the algorithms
employed.  It is only this last variable over which we have any control.

4.1 Forward Error Correction

In TCP, reliable data transport is achieved through the use of stop-and-wait and go-back-N
algorithms.  However, because of their potentially high latencies, these mechanisms are
inappropriate for the transmission of real-time media
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We thus considered two other methods for coping with transmission loss: forward error
correction (FEC) and automatic repeat request (ARQ).  In FEC, a block code or parity code is
applied to a set of k packets to generate a set of n > k packets.  The receiver then only needs to
receive any k-packet subset of the resulting n-packet block in order to recover perfectly the k
original packets.  The advantage of FEC is that the loss recovery happens entirely in the receiver
and the sender does not need to know which packets were lost.  Since no retransmission is
required, no time penalty is imposed by the loss recovery.  For this reason, FEC is often
considered to be a preferred error recovery method for real time interactive media
communication [13][14][15].

The drawback of FEC is the increased bandwidth required by the redundant data.  Furthermore,
its ability to recover lost packets is strictly dependent on the loss characteristics of the underlying
network.  Specifically, FEC cannot recover from a large burst of packet loss, which we observed
frequently during our trials (see Section 5.2).  For this reason, FEC was inappropriate for our
implementation.  An additional relevant factor is that we were only concerned with reliable, one-
way transmission, hence, there was no need for low-latency interactivity.

However, it is in our interest to extend the current system to support interactive applications such
as distributed musical performance and remote music education, in which there is a strict latency
constraint on the delivery of audio in both directions.  While figures vary considerably
depending on experimental factors, studies of human tolerance of delay [16][17][18][19] suggest
that effective musical interaction requires latency bounds of approximately 40ms.6  Under such
time constraints, FEC is worthy of further consideration as an option for error recovery.
Obviously, different requirements motivate alternate decisions.

4.2 Automatic Repeat Request

In ARQ, the sender explicitly retransmits the packets that are requested by the receiver.
Although this introduces a delay of at least three one-way trip times, previous research has
demonstrated the effectiveness of ARQ for the transmission of real-time media, especially in the
case of multicasting [20].  For our application, ARQ has proven quite effective provided that
network capacity was not saturated.

Although we have so far demonstrated unicast alone, our system can be extended easily to
support multicast, permitting its application to the simultaneous distribution of a performance to
several locations.  In this case, the Mbone [12] tree structure provides a suitable hierarchical
model for the transmission of resend requests, in which the requests generated at low levels of
the tree are collected and grouped by their parent nodes before being relayed higher in the tree.
This is essentially the mechanism used by RTCP to prevent overwhelming the sender by
negative acknowledgement (NACK) implosion.

                                                
6 According to informal studies reported by Michael Brook, Bob Adams and Richard Boulanger, solo performers
find feedback delays from daisy-chained MIDI instruments as low as 2-6 ms to be noticeable and in fact annoying.
However, for multi-party interaction, Rasch’s studies [16][17] found that among members of a woodwind
instrument ensemble, deviations of onset from 30 to 50ms were perceived as being tightly synchronized.
Regardless, delays arising from typical videoconferencing systems are a minimum of one order of magnitude
greater.
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Our implementation of ARQ employs a selective-repeat technique.  Each data packet is labeled
by the sender with a unique sequence number.  The receiver detects missing data by checking
periodically for a gap in the sequence numbers of received packets.  When such a gap is found,
the receiver issues a NACK to the sender as a retransmission request [5].  In general, such a gap-
detection routine must allow for a small settling period of incoming data so that NACKs are not
generated immediately as a consequence of out-of-sequence packets. However, with the very
conservative buffering employed in our demonstrations, this was simply not an issue of concern.

We illustrate the ARQ-based packet recovery protocol by intentionally dropping 30 seconds of
audio data in the middle of an AC-3 transmission, as shown in Figure 5.  At the onset of
simulated packet loss, the receiving rate drops to zero.  The receiver then issues a retransmission
request and shortly thereafter, the retransmitted packets begin to arrive.

Since the packet loss in this case is not caused by network congestion, the simulation is, of
course, completely artificial, and serves only to demonstrate the high-level operation of the
program.  In practice, retransmission of lost data cannot be guaranteed to arrive in a timely
manner during periods of network congestion, a point we address in the following section.

4.3 Retransmission Protocol

Having decided on the use of ARQ, we were then faced with the choice of retransmission
protocol for lost audio packets.  Based on the discussion of section 3.1, UDP would seem to be
an obvious candidate.  However, because of its inherent unreliability, we must also apply our
loss recovery protocol to the retransmitted data.  Furthermore, the temporal constraint that each
audio packet must be received before its playback time mandates that losses of the resent packets
be detected quickly and that further repeated retransmissions be carried out with minimal
latency.

For the high bandwidth, uncompressed audio data, a UDP based retransmission protocol is used.
Once a NACK is issued for missing packets, a timer is started.  When this timer expires, the
missing packets are rechecked, and if any are still missing, another NACK is sent.  This process
could continue until it is too late to receive the missing packets.  However, a disadvantage of this
method is that multiple retransmissions will increase network load, thereby leading to further
packet loss.  In order to prevent overloading the network with repeatedly resent data, we abort
our retransmission efforts on any given packet after three attempts.

Under conditions of high congestion, our experiments demonstrate that TCP is unable to
retransmit lost data effectively, due to its network-friendly congestion control algorithms.  For
greedy, high bandwidth, real time applications, UDP is thus the only choice for retransmission.
However, for low bandwidth audio data such as AC-3, we find that TCP is well suited to deal
with retransmissions, as the risk of delay associated with its congestion avoidance mechanism is
preferable to continued packet loss under UDP.  The reason for this hypothesis is simple: Even if
the packets resent by TCP do not arrive in time for playback, the continuing UDP transmission
of later audio data will not be affected.  Thus, a break in the music, if one is forced to occur, will
be of minimal duration.  Our hypothesis was confirmed by experiments, described in section 5.3,
which compare the performance of TCP and UDP for loss recovery of an AC-3 transmission
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under different levels of congestion.  This led us to choose TCP as the retransmission protocol
for the AC-3 demonstrations.

4.4 Naïve Congestion Control

Retransmitted data naturally increases bandwidth utilization.  For the transmission of
uncompressed audio at 13.8 Mbps, some of the network links near the sender approached
saturation.  Under these conditions, it was thus dangerously easy to overload the network.  What
happens in this situation can be described as a positive feedback loop: A competing data stream
causes congestion, which leads to packet loss in our application.  Retransmission is then
requested to recover the lost packets.  If the competing data stream persists during the
retransmission, congestion becomes even more severe, leading to a further increase of packet
loss, and so forth, eventually leading to congestion collapse.

In order to avoid this scenario, we define certain thresholds on the network traffic parameters.
Once these thresholds are exceeded, the program simply ignores any packet loss.  Unfortunately,
this method is rather naive.  It may activate too early and drop packets that are potentially
recoverable or activate too late to prevent congestion collapse.  One would prefer a smoother
response to congestion.

As discussed in section 3, TCP implements an effective congestion avoidance algorithm.  It will
back off and decrease the transmission rate whenever congestion is encountered.  While the
nature of our application does not lend itself to a strong congestion control procedure, it would
be disastrous to do without one altogether.  Therefore, we chose to implement a weaker
algorithm, based on layered coding congestion control.

4.5 Layered Coding Congestion Control

Layered coding congestion control is a common method used in real time multimedia streaming
[21][22][23].  The idea is to reduce sampling resolution, and hence, bandwidth usage of the
media stream, while keeping the frame rate constant, when congestion is encountered.  It is
significantly different from the congestion control used in TCP, in which case the transmission
rate is reduced during periods of congestion.  Layered coding relieves network congestion by
reducing the quality of the transmitted media, while preserving the frame rate at which it is sent.
While beneficial, we note that this is a relatively weak solution, which cannot deal with
congestion as effectively as the control algorithm employed by TCP.

Applying the layered coding technique to the uncompressed audio stream, we can drop the n
least significant bits of each audio sample to reduce its bit rate, where n varies monotonically
with observed congestion.  For example, we can reduce the sample resolution from 24 to 16 bits
for a 33% decrease in bandwidth requirements.  Since the least significant bits are arranged at the
end of each audio block, as shown in Figure 2, congestion control is easily accomplished by
truncating data packets at the desired resolution.

The dynamic variation of sample resolution is the most important component of the congestion
control algorithm, and depends on many parameters.  In our experimental trials between McGill
and NYU, we found that a packet loss of 10% represents a reasonable threshold at which to
assume possible network congestion.  Therefore, as soon as this threshold is reached within any
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window, we reduce sample resolution by one bit. For every further 4% increase in packet loss,
we drop an additional bit, which is equivalent to reducing the original 24-bits/sample stream by
1/24 ≈ 4%. In section 5.4, we present some measurements demonstrating the effectiveness of the
layered coding congestion control in improving packet loss recovery and relieving network
congestion.

5 System Performance

The characteristics of the underlying network are very important in determining the design of our
system and its resulting performance.  In order to better understand these characteristics of the
network between McGill and NYU, we conducted numerous measurements of throughput, round
trip time, jitter, and the effect of packet size and burst length on throughput.

5.1 Packet Size

A previous study [5] demonstrated that packet size has a significant effect on LAN throughput,
with larger packet size leading to greater received data rates.  We expected to find similar results
in an Internet environment, so measured the throughput achieved for various packet sizes
transmitted at a fixed rate between McGill and NYU.  When the transmission rate was low (1.5
Mbps and 13 Mbps), packet size had little effect, but interestingly, at high transmission rates
(greater than 20Mbps), we were able to achieve maximum throughput with a medium sized
packet of approximately 6000 bytes.   Based on these results, we opted to use a packet size of
1500 bytes for the AC-3 stream, and 6912 bytes for the uncompressed format, since the effect of
packet size is not significant in these two cases.

5.2 Packet Loss

The pattern of packet loss is very important since it determines the loss recovery algorithm we
should use.  Despite contrasting experiences of researchers working with the high-speed Abilene
backbone [24], our observations were consistent with previous results demonstrating that packet
losses are typically bursty [25][26]. Figure 6 shows one of our packet loss measurements at 13.8
Mbps, with a packet size of 6912 bytes over a 20 minute trial.  This means that the transmission
rate of the packet is 250 packets per second.   While the overall packet loss rate is negligible
(0.6%), the number of dropped packets in some of these episodes is alarmingly high.  Although,
there are only 13 episodes in which the run of losses is longer than five packets, these account
for 57% of the total packet loss.  Under these conditions, a simple FEC is inappropriate for
effective recovery.

Under conditions of packet loss caused by network congestion, it is likely that the congestion is
short-lived, in which case, retransmitted data can arrive without difficulty.  However, it is also
possible that the retransmission will face similar or worse congestion than that which caused the
original packet loss, especially if the resend occurs in close proximity to the initial transmission.
By introducing a receive buffer that is longer than the expected burst duration, retransmission
congestion problems can be reduced significantly.
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The remainder of this section explores our design decisions concerning the management of
packet loss as well as the experiments conducted to validate the design.

5.3 AC-3 retransmission

In earlier sections, we suggested that a TCP based retransmission might be better suited for AC-3
data than a simple UDP based scheme.  In order to verify this hypothesis, we carried out
simulations using both TCP and simple7 UDP retransmissions to recover from packet loss caused
by manually generated network congestion.  Figure 7 summarizes the results of these tests,
comparing TCP and UDP retransmission protocols under varying levels of network congestion.
The generated congestion has a ten second duration while the receiver allows a maximum of five
seconds delay before an audio packet must be played.

Under conditions of mild network congestion, TCP demonstrates a 100% recovery rate, while
UDP, due to its unreliable nature, achieves slightly less. Thus, without a considerable amount of
hand-tuning of the UDP recovery mechanism, TCP is preferable under modest network loads.
This should come as no surprise, since TCP has been optimized for such environments.

However, as network congestion increases, TCP does not cope as well.  In fairness, TCP was
designed to be well behaved to the network under such conditions, whereas our needs are
somewhat greedy.  As can be seen in Figure 7, for our particular experimental configuration,
UDP is better able to recover from network congestion brought on by competing traffic in excess
of 30 Mbps.  Although TCP will eventually deliver 100% of the packets, they do not arrive in
time for playback.  Thus, the effective recovery rate of TCP is significantly lower than our UDP
protocol.

Interestingly, we note that despite the quantitative superiority of UDP (70% recovery vs. 17% for
TCP) under severe congestion, there was little observable difference in terms of the audio
quality. To a human listener, the resulting gaps in the audio stream are easily discernable,
regardless of whether those gaps last for 80 ms or 800 ms. In fact, it may be preferable to mute
for several seconds8  rather than play a segment corrupted by missing packets.

5.4 Layered Coding Congestion Control for Uncompressed Audio

In order to evaluate the effectiveness of the layered coding congestion control mechanism for
uncompressed audio, we tested its performance under conditions of varying network congestion.9

Again, we produced congestion manually, by pumping a dummy stream of up to 17 Mbps into
the network at the source, in parallel with our 13.8 Mbps audio stream, for a duration of

                                                
7 For a simple UDP retransmission scheme, the lost data packets are retransmitted only once.
8 The suggestion to invoke this primitive form of error concealment is based solely on our subjective experience
from the experiment.
9 Note that the experiments reported here were performed under different network conditions from those of the
previous section.  Whereas the data for Figure 7 was produced shortly after the first AES demo, with a lightly loaded
receiver connected directly to the NYU backbone, the data for Figures 8 and 9 was obtained more recently, with the
receiver running on a public machine several hops away from the backbone.  This accounts for the discrepancy in
additional data required to produce the same levels of congestion in the various experiments.
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approximately 30 seconds. Figure 8 presents the results of lost packet recovery both with and
without layered coding congestion control.  While the program is unable to recover all lost
packets in time for playback under conditions of severe congestion, it performs significantly
better with the layered coding congestion control mechanism than without it.  From the listener’s
perspective, there is a region at the left of the graph in which the layered coding congestion
control is able to achieve an unbroken playback stream, with occasional reduction in sample
resolution, whereas a simple retransmission strategy results in occasional breaks in the music.

Of course, the primary motivation for employing a congestion control mechanism is its damping
effect on bandwidth utilization during periods of heavy network traffic.  Although the positive
feedback loop still exists, its gain is reduced.  This effect is demonstrated in Figure 9,
representing the rate of packet loss, which is a reasonable indication of network congestion, as a
function of time.  One can see that without congestion control, packet loss increases rapidly and
remains above 50% for almost half of the congestion period.  From our experience, timely
recovery becomes exceedingly difficult once the loss rate exceeds this level.  However, with
congestion control, the overall level of packet loss is lower, as is the rate of its increase during
congestion.

6 Conclusions

Before discussing the lessons learned from these experiments and demonstrations, it is helpful to
distinguish between the requirements for our one-way audio transmission (e.g. broadcasting) and
those of a two-way interactive audio transmission (e.g. teleconferencing).  While the former are
generally insensitive to delay, this is not the case for interactive applications, such as remote
music teaching, where the maximum tolerable latency is very low.  For example, studies by
telephony companies suggest that a one-way delay of 100ms is perceptible to most listeners [27]
and that a delay of 400ms in human conversation is “annoying.”  For musical interaction this
number is considered to be significantly lower [16][17].

6.1 Effective Loss Recovery

Although different applications require completely different architectures, the fundamental
problem of audio over Internet is flow control, that is, efficient transmission and reliable
recovery of lost data. For high bandwidth, unidirectional music streaming, we found automatic
repeat request (ARQ) to be the most effective loss recovery mechanism, allowing for perfect
playback of the audio stream, provided network congestion remained moderate. Unlike forward
error correction (FEC), which incurs the overhead of additional bits on every transmission, ARQ
need only increase its sending rate to recover from lost data.  Not only is this approach more
appropriate under conditions of bursty packet loss, it is also helpful in minimizing bandwidth
requirements, which, in the case of uncompressed audio, are already very high.

As a counterpoint, in a recent demonstration of HDTV over Internet [28], researchers at the
University of Washington successfully made use of FEC for a 40 Mbps compressed
transmission.  However, their network path afforded two orders of magnitude more bandwidth,
with their host-to-network connectivity operating on Gigabit (vs. 100 Mbit) Ethernet.
Obviously, these differences do not permit an apples-to-apples comparison.  While FEC proved
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effective for the HDTV trial, it could easily lead to congestion problems when spare bandwidth
is limited.

In general, one must make a trade-off between audio quality and latency.  For interactive audio
applications with a hard upper limit on latency, it is difficult to implement a perfect loss recovery
protocol.  If total delay is to be kept only marginally greater than network latency, it is nearly
impossible to use an ARQ implementation since any retransmission request and resend involves
a minimum of one round-trip delay.  In this case, one would have no choice but to employ FEC.
For example, in remote music teaching, if the participants are able to tolerate occasional breaks
in the music, perhaps by repeating the broken session, then FEC should be employed to
minimize latency and improve interactivity.  In fact, we are in the process of implementing an
FEC recovery protocol for AC-3 applications requiring low latency, since the lower bandwidth
demands of AC-3 are unlikely to create congestion problems.

6.2 TCP as Transmission or Retransmission Protocol

Although, TCP is not an ideal protocol for bulk data transmission, various modifications can be
made to improve its throughput [29].  For example, the size of the sliding window advertised by
the receiver limits the amount of data that the sender can transmit pending an explicit
acknowledgement [30].  To compensate, we increase the TCP buffer size on both sender and
receiver, thereby improving throughput [29][31].  The selective acknowledgement protocol,
along with various other extensions [10][32][33], is designed to improve the performance of TCP
in the event of multiple missing segments within a window.  Although, these modifications
cannot change the fact that TCP, over a lossy network, is limited by its congestion control
algorithm, we believe that a properly tuned TCP based packet recovery protocol could recover
most of the packet loss experienced by an AC-3 stream.  However, this would likely not be
feasible for high bandwidth uncompressed audio, nor interactive music applications in which
minimal latency is imperative.

Our experiments further indicated that vanilla TCP is a good candidate as the retransmission
protocol for AC-3 data, provided packet loss is not severe. In this case, TCP is only used for
relatively small amounts of data communication, so delays related to its robust algorithms tend to
be of minimal consequence. Exhaustive testing, in which the system ran uninterrupted for several
days, demonstrated the robustness of this approach.

Based on the strengths of TCP, we are developing a loss recovery protocol on top of UDP.  This
would provide many of the desirable features of TCP, in particular, flow control and reliability,
while offering a less restrictive congestion avoidance mechanism.  For example, to maximize
performance, the slow start algorithm [30] will not be implemented.  However, some congestion
control is still required, in particular under severe packet loss, as best-effort (i.e. greedy) delivery
over the Internet is highly problematic [34].

6.3 Multicasting

Although our experiments concentrated on one-to-one communication, there are likely far more
applications for this work that involve simultaneous transmission to multiple recipients.  Parallel
unicasting to multiple hosts, as is the practice of many network-based applications, simply does
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not scale, and hence, multicasting is required [5].  Fortunately, the algorithms we have employed
lend themselves easily to a multicast adaptation, and we will be exploring this direction in the
near future.

6.4 Coping with Congestion

An important determinant in the evaluation of a software system is its performance under
extreme conditions, that is, stress testing.  In our application, this is related to the system’s
performance under conditions of severe congestion.  While no system can assure 100% data
transfer in this case, we can relieve congestion by employing the appropriate congestion control
algorithms.  We have already demonstrated that a system with proper congestion control suffers
less packet loss during a severe congestion than a system without congestion control.

Theoretical and experimental study has shown that a single traffic stream with no congestion
control can cause congestion collapse in a busy network, disastrous to all users [28].  Our results
are consistent with these studies.  In response, the network community is promoting new routing
algorithms that punish those traffic streams that do not employ congestion control mechanisms.

The design and implementation of a congestion control algorithm for end-to-end real time media
communication is an active research area.  While the congestion control utilized by TCP is
mature and proven, it is not suitable for real time applications.  Instead, most ongoing studies
follow the approach of layered coding.  Unfortunately, a general purpose solution is impossible,
as different media such as raw video, linear PCM audio, and AC-3 audio, each have different
characteristics that may or may not lend themselves to any one layered implementation. For
example, our simple implementation of layered coding appears to be effective for uncompressed
audio transmission, but cannot be applied to AC-3.

As a final note on this topic, if the bandwidth of an audio stream is high relative to the available
capacity, slight reductions achieved through layered coding will likely prove less effective than
TCP congestion control.  From our experience, unless layered coding can reduce bandwidth
substantially without a serious decrease in observed quality, a better solution for congestion
control may be to cut the transmission entirely for a certain period.

6.5 Quality of Service

In the study, we devoted considerable effort to the development of various solutions to cope with
packet loss due to network congestion.  With quality-of-service (QoS) reservations protocols
such as RSVP [35] becoming well known, the Internet of the future will hopefully render much
of these efforts obsolete.  However, until the underlying network, from any source to every
destination, offers sufficient bandwidth to support requested services and is compliant with these
new protocols, the solutions we offer here will have continued relevance to the networks
community.

6.6 Final Words

Although considerable effort went into the design and development of the system, the authors
must confess to being surprised by how well it worked.  Given the unreliability of network
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communications and the unavailability of bandwidth reservations, at least a few glitches were
expected.  Indeed, during development and tuning, various problems with the network
configuration were noted, each of which could have proved fatal to the demonstration.

Following a cautious initial demonstration employing a fifteen second buffer to the Cantor Film
Center, the delay was reduced to a mere three seconds.   When this failed to introduce
interruptions to the audio stream, the network news feed into NYU was resumed, thereby
generating considerable competing traffic at the receiver end.  At this point, several interruptions
to the Cisco IP/TV video stream (requiring similar bandwidth to our audio system and utilizing
the same delay) were observed.  However, at no point during the demonstration did the audio
break from a continuous stream.

Our experiments highlighted some of the strengths and weaknesses of TCP and UDP as network
protocols for real-time transmissions.  Clearly, each has its place, but neither, alone, is sufficient
for applications of this nature.  Ongoing efforts to combine the advantages of each, in
conjunction with a choice of layered coding congestion avoidance mechanisms, may hold
promise for a wide variety of future applications.  It is our hope that the work started here will
motivate the development of improved protocols that are better suited for high-fidelity, high-
bandwidth, and low-latency communications over the Internet.
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Figure 2. Format of an uncompressed  audio data block.    Every six
bit segment contains the values of one particular bit position of one
audio sample over all six channels. The data is ordered with the
most significant bit of every sample appearing before the next
significant bit.  This permits signal reduction without complex
manipulations through a simple truncation of the block at any
chosen resolution.
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Figure 6. The bursty nature of packet loss.  While there are only 13
bursts of packet loss that could not be recovered using an FEC
scheme, these bursts accounted for 57% of the total packet loss.  In
particular, a single large burst, such as the one shown here of 881
packets, is not atypical for busy periods of the day.
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